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1 Introduction

We first consider in Section 2 a three nodes flow-based network example to cover concrete aspects
of the LTA coverage problem and of the new methodology to perform it within Euphemia. The
new methodology is based on a standard result to describe the ”convex hull of the union of two
polyhedra”1.

The example is used to compare (a) models and market outcomes, (b) shadow prices and price
formation, and (c) the congestion rent compared to LTA liabilities. It is shown that formulas
relating bidding area market prices to shadow prices of PTDF or LTA constraints are identical to
their classic flow-based or ATC counterparts. It is also discussed why the LTA coverage process
guarantees to avoid a missing money issue to cover LTA liabilities.

Appendix A then presents the same developments with general notation to describe the approach
and related results in full generality.

2 A detailed example

The base case example2 is first presented, where a missing money problem for LTA liabilities
occur. Next Sections then discuss approaches for the LTA coverage process.

2.1 The base case

We consider first a base case example with a three-node network (see figure 1 below) where:

• node A has two supply
orders:
400MWh @ 10e/MWh
600MWh @ 20e/MWh

• node B has two demand
orders:
100MWh @ 70e/MWh
900MWh @ 60e/MWh

• node C has one demand
order:
1000MWh @ 50e/MWh

and the following PTDF constraints apply:

0.75netposb + 0.5netposc ≤ 250

netposa ≥ −1500

Market outcome:

• A exports 450MWh, pricea = 20 e/MWh

• B imports 100MWh, priceb = 65 e/MWh

• C imports 350MWh, pricec = 50 e/MWh

• Welfare = 19 500 e

• Congestion rent = −450× 20 + 100× 65 + 350× 50 = 15 000e

• Order surpluses = 4 500 e

This market outcome can be obtained by solving the following welfare optimization problem (for
each constraint, the associated shadow price variable is indicated on the right in square brackets,
to ease later discussions):

1See for example Theorem 1 in [1], or Chapter 2 ”Polyhera” in [2]. It is briefly formally described in Appendix.
2The base case is an example illustrating flow factor competition in flow-based models presented in CWE Market

Coupling, Flow-Based Forum, Amsterdam, 1st of June 2011, online: https: // www. apxgroup. com/ wp-content/

uploads/ Final_ presentation_ June_ 2011. pdf .
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max welfare := (100)(70)xb1+(900)(60)xb2+(1000)(50)xc− (400)(10)xa1− (600)(20)xa2 (1)

netposa = −400xa1 − 600xa1 [pricea = 20] (2)

netposb = 100xb1 + 900xb2 [priceb = 65] (3)

netposc = 1000xc [pricec = 50] (4)

0 ≤ xi ≤ 1 ∀i (5)

PTDF constraints:

0.75netposb + 0.5netposc ≤ 250 [ShadowPriceFB
1 = 60] (6)

− netposa ≤ 1500 [ShadowPriceFB
2 = 0] (7)

Net exports can be linked to (non-unique) commercial flows:

netposa = flowba + flowca − flowab − flowac [priceFB
a = 20] (8)

netposb = flowab + flowac − flowba − flowbc [priceFB
b = 20] (9)

netposc = flowac + flowbc − flowca − flowcb [priceFB
c = 20] (10)

f ≥ 0 (11)

Note that (8)-(10) imply :

netposa + netposb + netposc = 0 (12)

• If we assume that the contracted volume of LTA rights is 400 MWh in the direction A → B,
as the price difference is 65− 20 = 45, the LTA liabilities are 45× 400 = 18000e.

• However, the congestion rent is equal to: −450×20+350×50+100×65 = 15 000e. Hence,
the congestion rent does not cover the LTA liabilities of 18 000e.
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𝟎. 𝟕𝟓	𝒏𝒆𝒕𝒑𝒐𝒔𝒃 +𝟎.𝟓	𝒏𝒆𝒕𝒑𝒐𝒔𝒄 	≤ 𝟐𝟓𝟎
				𝒏𝒆𝒕𝒑𝒐𝒔𝒂 ≥ −𝟏𝟓𝟎𝟎

100 350

𝒑𝒓𝒊𝒄𝒆𝒂 = 𝟐𝟎

𝒑𝒓𝒊𝒄𝒆𝒄 = 𝟓𝟎𝒑𝒓𝒊𝒄𝒆𝒃 = 𝟔𝟓

export = 450 =	−𝑛𝑒𝑡𝑝𝑜𝑠!

Figure 1: Base case example.
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• This is related to the fact that a solution where A exports to B 400MWh and netposc = 0,
i.e. where netposa = −400, netposb = 400, netposc = 0, ”commercial flow” flowab = 400
and all other variables are null, is not feasible for the network model: constraint (6) would
be violated3.

• To solve this issue, a preferred solution is to enlarge the FB model ”just enough” so as to
contain that possibility netposa = −400, netposb = 400, netposc = 0, f lowab = 400 (other
variables null).

• This is done by considering the smallest network model that can be described by linear
constraints of the form ax ≤ b, which contains both the initial feasible points and the
new possibility netposa = −400, netposb = 400, f lowab = 400. Technically, we want the
adherence of the convex hull of the union of the initial flow-based domain, and of the LTA
domain(the new possibility to add), denoted conv(FB ∪ LTA).4

2.2 The virtual branch approach for conv(FB ∪ LTA)

2.2.1 Model and market outcome

For the base case example above, let FB be the set of feasible net positions and flows described
by conditions (6)-(11) and let LTA be the set of net positions that can be obtained by allowing
a flow fab ∈ [0; 400], netposa = −fab, netposb = fab, netposc = 0 (and all other flows set to zero).
Actually, for LTA, only the extreme case fab = 400, netposa = −400, netposb = 400, netposc = 0
(other flows null) needs to be considered for inclusion in the network model: all intermediate cases
with fab ∈ [0; 400] will automatically be included as well.

In the Virtual branch approach, one uses new PTDF constraints to describe conv(FB∪LTA). The
market outcome obtained is further discussed below and depicted on figure 2. It can be shown
that for our example, the new PTDF constraints (18)-(20) together with the system condition
netposa + netposb + netposc = 0 (here replaced by (21)-(23) as done in the base example above)
exactly describes conv(FB ∪ LTA).

The following small welfare optimization problem hence describes the market clearing problem
with the network model enlarged just enough to guarantee that the congestion rent will cover the
LTA liabilities.

max welfare := (100)(70)xb1+(900)(60)xb2+(1000)(50)xc−(400)(10)xa1−(600)(20)xa2 (13)

netposa = −400xa1 − 600xa1 [pricea = 20] (14)

netposb = 100xb1 + 900xb2 [priceb = 63.75] (15)

netposc = 1000xc [pricec = 50] (16)

0 ≤ xi ≤ 1 ∀i (17)

PTDF constraints including (VB):

3It is shown below that if this possibility is feasible for the network model, it is guaranteed that the congestion
rent covers the LTA liabilities.

4Technically, one wants this convex hull ”with its boundary included”, hence the notation conv to distinguish
from conv, to ensure that the enlarged set is still a polyhedron of the form {x|Ax ≤ b}. This is because if P1 and
P2 are two polyhedra, i.e. two sets of the form {x|Ax ≤ b}, conv(P1 ∪ P2) might not be a polyhedron as it might
”not contain its boundary”, see Appendix C for a small illustrative example and discussion.

5



− 2netposa + netposb ≤ 1200 [ShadowPriceFB
1 = 0] (18)

− 24netposa + 11netposb ≤ 14000 [ShadowPriceFB
2 = 1.25] (19)

− netposa ≤ 1500 [ShadowPriceFB
3 = 0] (20)

Net exports can be linked to (non-unique) commercial flows,:

netposa = flowba + flowca − flowab − flowac [priceFB
a = 50] (21)

netposb = flowab + flowac − flowba − flowbc [priceFB
b = 50] (22)

netposc = flowac + flowbc − flowca − flowcb [priceFB
c = 50] (23)

f ≥ 0 (24)

Market outcome for LTA inclusion based on the virtual branch approach:

• A exports 537.5MWh, pricea = 20 e/MWh

• B imports 100MWh, priceb = 63.75 e/MWh

• C imports 437.5MWh, pricec = 50 e/MWh

• Welfare = 22 125 e

• Congestion rent = −537.5× 20 + 100× 63.75 + 437.5× 50 = 17 500e

• Order surpluses = 4 625 e

A

B C

400

100

600

900
1000

suppl
y

demand
deman
d

€20
€10

€70
€60

€50

537.5

437.5

𝒑𝒓𝒊𝒄𝒆𝒂 = 𝟐𝟎

𝒑𝒓𝒊𝒄𝒆𝒄 = 𝟓𝟎𝒑𝒓𝒊𝒄𝒆𝒃 = 𝟔𝟑. 𝟕𝟓

export = 450 =	−𝑛𝑒𝑡𝑝𝑜𝑠!

import = 100 =	𝑛𝑒𝑡𝑝𝑜𝑠" import = 300 =	𝑛𝑒𝑡𝑝𝑜𝑠#

Figure 2: Market outcome with LTA coverage
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2.2.2 Shadow prices and price formation

One can observe the following classical relations:

pricel = priceFB +
∑
m

ptdfm,lShadowPricem (25)

where priceFB corresponds to the ”system price” equal to 50 = priceFB
a = priceFB

b = priceFB
c in

the example, see (13)-(24). One can derive from these relations:

pricek − pricel =
∑
m

ShadowPricem(ptdfm,k − ptdfm,l) (26)

For example, the price difference

priceb − pricea = 63.75− 20 = 43.75 (27)

is equal to

ShadowPriceFB
2 (ptdf2,b − ptdf2,a) = 1.25[11− (−24)] = 43.75 (28)

2.2.3 Congestion rent and LTA coverage

We observe now that the congestion rent covers the LTA liabilities:

• LTA liabilities are given by the contracted volume times the price difference between area B
and area A, that is 400× (63.75− 20) = 400× 43.75 = 17500e

• On the other side, the congestion rent is equal also to 17500e, cf. the computation above.

The missing money problem has disappeared.

Let us see on this example the reason why the missing money disappears in general when one
considers conv(FB ∪LTA) (the statement with more general notation is discussed in Section A.3
below).

This is related to the following: for the market prices price∗a = 20, price∗b = 63.75, price∗c = 50
considered as fixed parameters, the operation of the transmission system given by the market out-
come netposa = −537.5, netposb = 100, netposc = 437.5 is optimal for the following maximization
problem:

7



max congestion rent = 20 netposa + 63.75 netposb + 50 netposc (29)

subject to the network model constraints (18)-(24).

As the constraints (18)-(24) contain ”by construction” the point netposa = −400, netposb =
400, netposc = 0, we know that the maximum obtained in (29) is at least equal to 20× (−400) +
63.75× 400 = 17500e.

So whatever the solution of the market outcome is, as the net positions will be optimal for (29),
the congestion rent will be at least 17 500 e (given the market prices 20, 63.75 and 50 in this
example, but the same reasoning holds whatever the obtained market prices are, cf Appendix A.3
for details). In the present example, using the optimal net positions netposa = −537.5, netposb =
100, netposc = 437.5 given by the market outcome, we see that the congestion rent is actually
exactly equal to 17 500 e.

2.3 The Extended formulation approach for conv(FB ∪ LTA)

Exactly the same market outcome as with the virtual branch approach in Section 2.2, depicted on
figure 2 above, is obtained with the following model based on the new methodology proposed for
LTA coverage. The only difference lies in the set of shadow prices ”explaining” the (same) bidding
area market prices and bidding area price differences.

2.3.1 Model and market outcome

Extended formulation approach:

max welfare := (100)(70)xb1+(900)(60)xb2+(1000)(50)xc−(400)(10)xa1−(600)(20)xa2 (30)

netposa = −400xa1 − 600xa1 [pricea = 20] (31)

netposb = 100xb1 + 900xb2 [priceb = 63.75] (32)

netposc = 1000xc [pricec = 50] (33)

0 ≤ xi ≤ 1 ∀i (34)

Virgin PTDF constraints with dedicated net export and flow variables for FB:

0.75netposFB
b + 0.5netposFB

c ≤ α1250 [ShadowPriceFB
1 = 55] (35)

− netposFB
a ≤ α11500 [ShadowPriceFB

2 = 2.5] (36)

(37)

netposFB
a = flowFB

ba + flowFB
ca − flowFB

ab − flowFB
ac [priceFB

a = 22.5] (38)

netposFB
b = flowFB

ab + flowFB
ac − flowFB

ba − flowFB
bc [priceFB

b = 22.5] (39)

netposFB
c = flowFB

ac + flowFB
bc − flowFB

ca − flowFB
cb [priceFB

c = 22.5] (40)

flowFB ≥ 0 (41)
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LTA constraints with dedicated net export and flow variables for LTA

flowLTA
ab ≤ α2400 [ShadowPriceLTA

ab = 43.75] (42)

other flow variables = 0 (43)

(44)

netposLTA
a = flowLTA

ba + flowLTA
ca − flowLTA

ab − flowLTA
ac [priceLTA

a = 20] (45)

netposLTA
b = flowLTA

ab + flowLTA
ac − flowLTA

ba − flowLTA
bc [priceLTA

b = 63.75] (46)

netposLTA
c = flowLTA

ac + flowLTA
bc − flowLTA

ca − flowLTA
cb [priceLTA

c = 50] (47)

flowLTA ≥ 0 (48)

Constraints relating the original net export and flow variables to their duplicates used to describe
respectively the virgin flow-based and LTA domains:

netposi = netposFB
i + netposLTA

i i ∈ {a, b, c} (49)

flowij = flowFB
ij + flowLTA

ij i, j ∈ {a, b, c} (50)

α1 + α2 = 1 (51)

α1, α2 ≥ 0 (52)

Market outcome for LTA inclusion based on the extended formulation approach:

• A exports 537.5MWh, pricea = 20 e/MWh

• B imports 100MWh, priceb = 63.75 e/MWh

• C imports 437.5MWh, pricec = 50 e/MWh

• Welfare = 22 125 e

• Congestion rent = −537.5× 20 + 100× 63.75 + 437.5× 50 = 17 500e

• Order surpluses = 4 625 e

2.3.2 Shadow prices and price formation

Let us first observe that we have the same bidding area market prices but a different set of shadow
prices as we now have the virgin flow-based constraints and LTA constraints (somehow ”scaled”
by the α) to model the network, instead of virtual branches.

However, market price differences are explained by similar relations via the shadow prices of the
PTDF constraints involved, namely:

Relation identical to (25):

pricel = priceFB +
∑
m

ptdfm,lShadowPricem (53)

where priceFB corresponds to the ”system price” now equal to 22.5 = priceFB
a = priceFB

b =
priceFB

c in the example, see (38)-(40).

For example,
pricec = 50 = 22.5 + 55(0.5) + 2.5(0) (54)

We can then also derive:
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Relation identical to (26):

pricek − pricel =
∑
m

ShadowPricem(ptdfm,k − ptdfm,l) (55)

For example, the price difference

priceb − pricea = 63.75− 20 = 43.75 (56)

is equal to

ShadowPriceFB
1 (ptdf1,b − ptdf1,a) + ShadowPriceFB

2 (ptdf2,b − ptdf2,a)

= 55[0.75− 0] + 2.5[0− (−1)] = 43.75 (57)

2.3.3 Congestion rent and LTA coverage

Discussions regarding the congestion rent would be exactly the same as the discussions in Section
2.2.3 for the virtual branch based approach. Only the constraints of the network model needs to
be adapted in the optimization problem for the operation of the transmission system, which is
here:

max congestion rent = 20netposa + 63.75netposb + 50netposc (58)

subject to the network model constraints (35)-(52).

Conditions (35)-(52) have replaced conditions (18)-(24).
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A Extended formulation for LTA inclusion in general

The extended formulation is described here with general notation for sessions with classical step
bid curves. How the formulation is obtained is briefly discussed in Appendix B.

A.1 Welfare maximization model

max
∑
i

QiP ixi (59)

s.t.

∑
i∈Orders(l)

Qixi = netposl [pricel] ∀l ∈ Locations (60)

0 ≤ xi ≤ 1 ∀i (61)

(62)

netposl =
˜netposFB

l + ˜netposLTA
l [p̃ricel] (63)

flowl,k = ˜flowFB
l,k + ˜flowLTA

l,k (64)

α1 + α2 = 1 [η] (65)

α ≥ 0 (66)

∑
l

ptdfm,l
˜netposFB

l ≤ α1 RAMm [ShadowPricem]∀m (67)

˜netposFB
l =

∑
k ̸=l

˜flowFB
k,l − ˜flowFB

l,k [priceFB
l ] ∀l ∈ Locations (68)

˜flowFB ≥ 0 (69)

˜flowLTA
l,k ≤ α2 capacityLTA

l,k [wLTA
l,k ] ∀l, k ∈ Locations (70)

˜netposLTA
l =

∑
k ̸=l

˜flowLTA
k,l − ˜flowLTA

l,k [priceLTA
l ] ∀l ∈ Locations (71)

˜flowLTA ≥ 0 (72)

A.2 Shadow prices and price formation

Conditions dual to the variables netposl:

p̃ricel = pricel (73)

Next conditions are written by taking (73) into account and replacing p̃ricel with pricel.
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Conditions dual to the variables ˜netposFB
l :

pricel = priceFB
l +

∑
m

ptdfm,lShadowPricem (74)

Conditions dual to the variables ˜netposLTA
l :

pricel = priceLTA
l (75)

Conditions dual to the variables ˜flowLTA
l,k ≥ 0:

wLTA
l,k ≥ priceLTA

k − priceLTA
l (76)

Using the associated complementary condition ˜flowLTA
l,k(w

LTA
l,k − priceLTA

k + priceLTA
l ) = 0, we

have:

˜flowLTA
l,k > 0 ⇒ priceLTA

k − priceLTA
l = wLTA

l,k ≥ 0 (77)

Conditions dual to the variables ˜flowFB
l,k ≥ 0:

0 ≥ priceFB
k − priceFB

l (78)

Considering (78) for all pairs l, k gives priceFB
k = priceFB

l (assuming that locations form a con-
nected component), and conditions (74) can be rewritten as:

pricel = priceFB +
∑
m

ptdfm,lShadowPricem, (79)

where priceFB corresponds to the ”system price”.

We then have the usual relations:

pricek − pricel =
∑
m

ShadowPricem(ptdfm,k − ptdfm,l) (80)

A.3 Congestion rent and LTA coverage

We show here with general notation that with the LTA coverage methodology, the congestion rent
is always sufficient to cover LTA liabilities.

Let us consider an optimal solution (x∗, netpos∗, f low∗) to the welfare maximization problem
(59)-(72) and consider the market prices price∗l obtained as optimal dual variables of (60).

We want to prove that the following inequality holds, meaning that the rent congestion is higher
than the LTA liabilities:

∑
l

netpos∗l price∗l ≥
∑
l,k

(price∗k − price∗l )
+capacityLTA

l,k (81)

The congestion rent appears on the left-hand side of the inequality and is expressed as the revenue
from operating the transmission network, i.e. realized from the buy/sell operations: netpos∗l > 0

12



if a volume is sold by the operator to location l, netpos∗l < 0 if a volume is bought from location
l and the left-hand side represents the sum of the associated money transfers given the locational
market prices price∗l .

The right-hand side represents LTA liabilities. The notation (price∗k − price∗l )
+ means the price

in location k, minus the price in location l, the difference being counted only of the price is higher
in location k, and the difference is replaced otherwise by 0: ((price∗k − price∗l )

+ is hence non-null
only if the price in location k is higher than in location l, in which case (price∗k − price∗l )

+ is
equal to that price difference). Multiplying (price∗k − price∗l )

+ by the volume of LTA rights in the
direction l → k, denoted by capacityLTA

l,k , and summing up over all possibilities for l, k, provides
the total LTA liabilities.

To prove (81), we will use the fact that (netpos∗, f low∗) obtained from the market clearing process
solves the following profit maximization problem for the transmission system, where locational
market prices price∗ are fixed parameters and where the operator seeks to find best import/export
decisions (netpos, flow) given those prices and assuming ”infinite market depth” (i.e. without
worrying about sufficient offers or demands in the order books):

max
(netpos,flow)

∑
l

netposl price
∗
l (82)

s.t. to network constraints (63)-(72).

To prove the inequality (81), it is hence sufficient to find a solution (netpos, flow) feasible for
(63)-(72) such that:

∑
l

netposl price
∗
l ≥

∑
l,k

(price∗k − price∗l )
+capacityLTA

l,k , (83)

as the congestion rent is at least as high as the left-hand side (since the congestion rent is an
optimal value of (82)).

Such a feasible solution can be straightforwardly constructed as the network model has been
enlarged for that purpose, and can be given by:

flowl,k = flowLTA
l,k := capacityLTA

l,k if price∗k > price∗l

flowl,k = flowLTA
l,k := 0 if price∗k ≤ price∗l

netposl = netposLTA
l :=

∑
k ̸=l

(flowk,l − flowl,k) =
∑
k ̸=l

(flowLTA
k,l − flowLTA

l,k )

αLTA := 1

αFB := 0, netposFB
l := 0, f lowFB

l,k := 0

13



B From convex combinations to the extended formulation
for conv(FB ∪ LTA)

The set of convex combinations of two points x, y is the set of points that can be written as
α1x+ α2y with α1 + α2 = 1, α1 ≥ 0, α2 ≥ 0.

It is the goal of the constraints (87)-(96) where one makes a convex combination of a point
(netposFB , f lowFB) in the flow-based domain described by conditions (91)-(93) and a point in the
LTA domain described by conditions (94)-(96). These constraints (87)-(96) are then transformed
via a substitution of variables into the formulation (63)-(72). Details follow in next paragraphs,
where cases with α1 = 0 or α2 = 0 are also discussed.

For α1 > 0, α2 > 0, α1 + α2 = 1, constraints (91)-(93) are fully equivalent to the original flow
based constraints (just multiplied by a strictly positive number α1) and constraints (94)-(96) are
similarly fully equivalent to the original LTA constraints.

Making the substitution ˜netposFB := α1netpos
FB , ˜flowFB := α1flow

FB , ˜netposLTA := α2netpos
LTA,

˜flowLTA := α2flow
LTA then exactly provides the formulation (63)-(72) in Appendix A.

Let us check that this formulation (63)-(72) also works when α1 = 0 or α2 = 0.

If α1 = 0, α2 = 1, assuming the PTDF polyhedron is bounded5, only the solution ˜netposFB =

0, ˜flowFB = 0 is feasible for (67)-(69) and we actually pick-up a point in the LTA domain, as
constraints (70)-(72) with α2 = 1 are the original LTA constraints. Similarly, if α1 = 1, α2 = 0,

it implies that ˜netposLTA = 0, ˜flowLTA = 0 and we actually pick up a point in the flow-based
domain, as constraints (67)-(69) with α1 = 1 are the original flow-based constraints.

max
∑
i

QiP ixi (84)

∑
i∈Orders(l)

Qixi = netposl (85)

0 ≤ xi ≤ 1 ∀i (86)

netposl = α1 netposFB
l + α2 netposLTA

l (87)

flowl,k = α1 flowFB
l,k + α2 flowLTA

l,k (88)

α1 + α2 = 1 (89)

α ≥ 0 (90)

α1

∑
l

ptdfm,l netposFB
l ≤ α1RAMm (91)

α1netpos
FB
l = α1

∑
k ̸=l

(flowFB
k,l − flowFB

l,k )

(92)

α1flow
FB ≥ 0 (93)

α2flow
LTA
l,k ≤ α2capacity

LTA
l,k (94)

α2netpos
LTA
l = α2

∑
k ̸=l

(flowLTA
k,l − flowLTA

l,k )

(95)

α2flow
LTA ≥ 0 (96)

5We refer to the reference [2] for the general case where polyhedra P1, P2 involved in the present method to
describe conv(P1 ∪ P2) are unbounded.
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C An example illustrating the difference between conv(P1 ∪
P2) and conv(P1 ∪ P2)

Consider:

• P1 = {(x, y)|y = 1}, the blue line in the figure 3 below,

• P2 = {(x, y)|x = 2, y = 2}, the red point in the figure 3 below.

𝑷𝟐 = { 𝒙, 𝒚 | 𝒙 = 𝟐, 𝒚 = 𝟐} 𝑷𝟐 = { 𝒙, 𝒚 | 𝒙 = 𝟐, 𝒚 = 𝟐}

𝑷𝟏 = { 𝒙, 𝒚 | 𝒚 = 𝟏} 𝑷𝟏 = { 𝒙, 𝒚 | 𝒚 = 𝟏}

Figure 3: Difference between conv(P1 ∪ P2) and conv(P1 ∪ P2).

One can check that all the possible convex combinations of the red point P2 and a point in the
blue line P1 are all the points between the blue line included, and the dotted green line excluded,
plus the red point: the dotted green line is a part of the boundary which is not included in
”conv(P1 ∪ P2)”. Formally:

conv(P1 ∪ P2) = {(x, y)|(y ≥ 1, y<2)} ∪ {(x = 2, y = 2)} (97)

This set cannot be described as a polyhedron, i.e. via non-strict linear inequalities.

However, if we include the boundary green line, cf. the right-hand side of figure 3, i.e. we consider
”conv(P1 ∪ P2) plus its boundary included”, which is written conv(P1 ∪ P2), one has:

conv(P1 ∪ P2) = {(x, y)| y ≥ 1, y ≤ 2} (98)

which is now a polyhedron.

For our optimization applications, one needs to work with the second option conv(P1∪P2).
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