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1 Introduction

We first consider in Section 2 a three nodes flow-based network example to cover concrete aspects
of the LTA coverage problem and of the new methodology. The new methodology is based on a
standard result to describe the ”convex hull of the union of two polyhedra”1.

The example is used to compare (a) models and market outcomes, (b) shadow prices and price
formation, and (c) the congestion rent compared to LTA liabilities. It is shown that formulas
relating bidding area market prices to shadow prices of PTDF or LTA constraints are identical to
their classic flow-based or ATC counterparts. It is also discussed why the LTA coverage process
guarantees to avoid a missing money issue to cover LTA liabilities.

Appendix A then presents the same developments with general notation to describe the approach
and related results in full generality.

2 A detailed example

The base case example2 is first presented, where a missing money problem for LTA liabilities
occur. Next Sections then discuss approaches for the LTA coverage process.

2.1 The base case

We consider first a base case example with a three-node network (see figure 1 below) where:

• node A has two supply
orders:
400MWh @ 10e/MWh
600MWh @ 20e/MWh

• node B has two demand
orders:
100MWh @ 70e/MWh
900MWh @ 60e/MWh

• node C has one demand
order:
1000MWh @ 50e/MWh

and the following PTDF constraints apply:

0.75netposb + 0.5netposc ≤ 250

netposa ≥ −1500

Market outcome:

• A exports 450MWh, pricea = 20 e/MWh

• B imports 100MWh, priceb = 65 e/MWh

• C imports 350MWh, pricec = 50 e/MWh

• Welfare = 19 500 e

• Congestion rent = −450× 20 + 100× 65 + 350× 50 = 15 000e

• Order surpluses = 4 500 e

This market outcome can be obtained by solving the following welfare optimization problem (for
each constraint, the associated shadow price variable is indicated on the right in square brackets,
to ease later discussions. ):

1See for example Theorem 1 in [1], or Chapter 2 ”Polyhera” in [2]. It is briefly formally described in Appendix.
2The base case is an example illustrating flow factor competition in flow-based models presented in CWE Market

Coupling, Flow-Based Forum, Amsterdam, 1st of June 2011, online: https: // www. apxgroup. com/ wp-content/

uploads/ Final_ presentation_ June_ 2011. pdf .
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max welfare := (100)(70)xb1 + (900)(60)xb2 + (1000)(50)xc− (400)(10)xa1− (600)(20)xa2 (1)

netposa = −400xa1 − 600xa1 [pricea = 20] (2)

netposb = 100xb1 + 900xb2 [priceb = 65] (3)

netposc = 1000xc [pricec = 50] (4)

0 ≤ xi ≤ 1 ∀i (5)

PTDF constraints:

0.75netposb + 0.5netposc ≤ 250 [ShadowPriceFB
1 = 60] (6)

− netposa ≤ 1500 [ShadowPriceFB
2 = 0] (7)

Net exports can be linked to (non-unique) commercial flows:

netposa = flowba + flowca − flowab − flowac [priceFB
a = 20] (8)

netposb = flowab + flowac − flowba − flowbc [priceFB
b = 20] (9)

netposc = flowac + flowbc − flowca − flowcb [priceFB
c = 20] (10)

f ≥ 0 (11)

Note that (8)-(10) imply :

netposa + netposb + netposc = 0 (12)

• If we assume that the contracted volume of LTA rights is 400 MWh in the direction A→ B,

A

B C

400

100

600

900
1000

supply

demand
demand

€20

€10

€70
€60

€50

𝟎. 𝟕𝟓 𝒏𝒆𝒕𝒑𝒐𝒔𝒃 + 𝟎. 𝟓 𝒏𝒆𝒕𝒑𝒐𝒔𝒄 ≤ 𝟐𝟓𝟎
𝒏𝒆𝒕𝒑𝒐𝒔𝒂 ≥ −𝟏𝟓𝟎𝟎

100
350

𝒑𝒓𝒊𝒄𝒆𝒂 = 𝟐𝟎

𝒑𝒓𝒊𝒄𝒆𝒂 = 𝟓𝟎𝒑𝒓𝒊𝒄𝒆𝒂 = 𝟔𝟓

export = 450 = −𝑛𝑒𝑡𝑝𝑜𝑠>

import = 100 = 𝑛𝑒𝑡𝑝𝑜𝑠? import = 350 = 𝑛𝑒𝑡𝑝𝑜𝑠@

Figure 1: Base case example.
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as the price difference is 65− 20 = 45, the LTA liabilities are 45× 400 = 18000e.

• However, the congestion rent is equal to: −450×20+350×50+100×65 = 15 000e. Hence,
the congestion rent does not cover the LTA liabilities of 18 000e.

• This is related to the fact that a solution where A exports to B 400MWh and netposc = 0,
i.e. where netposa = −400, netposb = 400, netposc = 0, ”commercial flow” flowab = 400
and all other variables are null, is not feasible for the network model: constraint (6) would
be violated3.

• To solve this issue, a preferred solution is to enlarge the FB model ”just enough” so as to
contain that possibility netposa = −400, netposb = 400, netposc = 0, f lowab = 400 (other
variables null).

• This is done by considering the smallest network model that can be described by linear
constraints of the form ax ≤ b, which contains both the initial feasible points and the
new possibility netposa = −400, netposb = 400, f lowab = 400. Technically, we want the
adherence of the convex hull of the union of the initial flow-based domain, and of the LTA
domain(the new possibility to add), denoted conv(FB ∪ LTA).4

2.2 The virtual branch approach for conv(FB ∪ LTA)

2.2.1 Model and market outcome

For the base case example above, let FB be the set of feasible net positions and flows described
by conditions (6)-(11) and let LTA be the set of net positions that can be obtained by allowing
a flow fab ∈ [0; 400], netposa = −fab, netposb = fab, netposc = 0 (and all other flows set to zero).
Actually, for LTA, only the extreme case fab = 400, netposa = −400, netposb = 400, netposc = 0
(other flows null) needs to be considered for inclusion in the network model: all intermediate cases
with fab ∈ [0; 400] will automatically be included as well.

In the Virtual branch approach, one uses new PTDF constraints to describe conv(FB∪LTA). The
market outcome obtained is further discussed below and depicted on figure 2. It can be shown
that for our example, the new PTDF constraints (18)-(20) together with the system condition
netposa + netposb + netposc = 0 (here replaced by (21)-(23) as done in the base example above)
exactly describes conv(FB ∪ LTA).

The following small welfare optimization problem hence describes the market clearing problem
with the network model enlarged just enough as to guarantee that the congestion rent will cover
the LTA liabilities.

max welfare := (100)(70)xb1+(900)(60)xb2+(1000)(50)xc−(400)(10)xa1−(600)(20)xa2 (13)

3It is shown below that if this possibility is feasible for the network model, it is guaranteed that the congestion
rent covers the LTA liabilities.

4Technically, one wants this convex hull ”with its boundary included”, hence the notation conv to distinguish
from conv, to ensure that the enlarged set is still a polyhedron of the form {x|Ax ≤ b}. This is because if P1 and
P2 are two polyhedra, i.e. two sets of the form {x|Ax ≤ b}, conv(P1 ∪ P2) might not be a polyhedron as it might
”not contain its boundary”, see Appendix C for a small illustrative example and discussion.
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netposa = −400xa1 − 600xa1 [pricea = 20] (14)

netposb = 100xb1 + 900xb2 [priceb = 63.75] (15)

netposc = 1000xc [pricec = 50] (16)

0 ≤ xi ≤ 1 ∀i (17)

PTDF constraints including (VB):

− 2netposa + netposb ≤ 1200 [ShadowPriceFB
1 = 0] (18)

− 24netposa + 11netposb ≤ 14000 [ShadowPriceFB
2 = 1.25] (19)

− netposa ≤ 1500 [ShadowPriceFB
3 = 0] (20)

Net exports can be linked to (non-unique) commercial flows,:

netposa = flowba + flowca − flowab − flowac [priceFB
a = 50] (21)

netposb = flowab + flowac − flowba − flowbc [priceFB
b = 50] (22)

netposc = flowac + flowbc − flowca − flowcb [priceFB
c = 50] (23)

f ≥ 0 (24)

Market outcome for LTA inclusion based on the virtual branch approach:

• A exports 537.5MWh, pricea = 20 e/MWh

• B imports 100MWh, priceb = 63.75 e/MWh

• C imports 437.5MWh, pricec = 50 e/MWh

• Welfare = 22 125 e

• Congestion rent = −537.5× 20 + 100× 63.75 + 437.5× 50 = 17 500e

• Order surpluses = 4 625 e

2.2.2 Shadow prices and price formation

One can observe the following classical relations:

pricel = priceFB +
∑
m

ptdfm,lShadowPricem (25)

where priceFB corresponds to the ”system price” equal to 50 = priceFB
a = priceFB

b = priceFB
c in

the example, see (13)-(24). One can derive from these relations:

pricek − pricel =
∑
m

ShadowPricem(ptdfm,k − ptdfm,l) (26)

For example, the price difference

5



priceb − pricea = 63.75− 20 = 43.75 (27)

is equal to

ShadowPriceFB
2 (ptdf2,b − ptdf2,a) = 1.25[11− (−24)] = 43.75 (28)

2.2.3 Congestion rent and LTA coverage

We observe now that the congestion rent covers the LTA liabilities:

• LTA liabilities are given by the contracted volume times the price difference between area B
and area A, that is 400× (63.75− 20) = 400× 43.75 = 17500e

• On the other side, the congestion rent is equal also to 17500e, cf. the computation above.

The missing money problem has disappeared.

Let us see on this example the reason why the missing money disappears in general when one
considers conv(FB ∪LTA) (the statement with more general notation is discussed in Section A.3
below).

This is related to the following: for the market prices price∗a = 20, price∗b = 63.75, price∗c = 50
considered as fixed parameters, the operation of the transmission system given by the market out-

A

B C
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900
1000

supply

demand
demand

€20
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€70
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€50

537.5

437.5

𝒑𝒓𝒊𝒄𝒆𝒂 = 𝟐𝟎

𝒑𝒓𝒊𝒄𝒆𝒂 = 𝟓𝟎𝒑𝒓𝒊𝒄𝒆𝒂 = 𝟔𝟑. 𝟕𝟓

export = 537.5 = −𝑛𝑒𝑡𝑝𝑜𝑠6

import = 100 =𝑛𝑒𝑡𝑝𝑜𝑠7 import = 437.5 =𝑛𝑒𝑡𝑝𝑜𝑠8

Figure 2: Market outcome with LTA coverage
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come netposa = −537.5, netposb = 100, netposc = 437.5 is optimal for the following maximization
problem:

max congestion rent = 20netposa + 63.75netposb + 50netposc (29)

subject to the network model constraints (18)-(24)

As the constraints (18)-(24) contain ”by construction” the point netposa = −400, netposb =
400, netposc = 0, we know that the maximum obtained in (29) is at least equal to 20× (−400) +
63.75× 400 = 17500e.

So whatever the solution of the market outcome is, as the net positions will be optimal for (29)
(assuming that we know that 20, 63.75 and 50 are the fixed market prices obtained from the
market outcome), the congestion rent will be at least 17 500 e. In the present example, using
the optimal net positions netposa = −537.5, netposb = 100, netposc = 437.5 given by the market
outcome, the congestion rent is actually exactly equal to 17 500 e.

2.3 The Extended formulation approach for conv(FB ∪ LTA)

Exactly the same market outcome as with the virtual branch approach in Section 2.2, depicted on
figure 2 above, is obtained with the following model based on the new methodology proposed for
LTA coverage. The only difference lies in the set of shadow prices ”explaining” the (same) bidding
area market prices and bidding area price differences.

2.3.1 Model and market outcome

Extended formulation approach:

max welfare := (100)(70)xb1+(900)(60)xb2+(1000)(50)xc−(400)(10)xa1−(600)(20)xa2 (30)

netposa = −400xa1 − 600xa1 [pricea = 20] (31)

netposb = 100xb1 + 900xb2 [priceb = 63.75] (32)

netposc = 1000xc [pricec = 50] (33)

0 ≤ xi ≤ 1 ∀i (34)

Virgin PTDF constraints with dedicated net export and flow variables for FB:

0.75netposFB
b + 0.5netposFB

c ≤ α1250 [ShadowPriceFB
1 = 55] (35)

− netposFB
a ≤ α11500 [ShadowPriceFB

2 = 2.5] (36)

(37)

netposFB
a = flowFB

ba + flowFB
ca − flowFB

ab − flowFB
ac [priceFB

a = 22.5] (38)

netposFB
b = flowFB

ab + flowFB
ac − flowFB

ba − flowFB
bc [priceFB

b = 22.5] (39)

netposFB
c = flowFB

ac + flowFB
bc − flowFB

ca − flowFB
cb [priceFB

c = 22.5] (40)

flowFB ≥ 0 (41)
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LTA constraints with dedicated net export and flow variables for LTA

flowLTA
ab ≤ α2400 [ShadowPriceLTA

ab = 43.75] (42)

other flow variables = 0 (43)

(44)

netposLTA
a = flowLTA

ba + flowLTA
ca − flowLTA

ab − flowLTA
ac [priceLTA

a = 20] (45)

netposLTA
b = flowLTA

ab + flowLTA
ac − flowLTA

ba − flowLTA
bc [priceLTA

b = 63.75] (46)

netposLTA
c = flowLTA

ac + flowLTA
bc − flowLTA

ca − flowLTA
cb [priceLTA

c = 50] (47)

flowLTA ≥ 0 (48)

Constraints relating the original net export and flow variables to their duplicates used to describe
respectively the virgin flow-based and LTA domains:

netposi = netposFB
i + netposLTA

i i ∈ {a, b, c} (49)

flowij = flowFB
ij + flowLTA

ij i, j ∈ {a, b, c} (50)

α1 + α2 = 1 (51)

α1, α2 ≥ 0 (52)

Market outcome for LTA inclusion based on the extended formulation approach:

• A exports 537.5MWh, pricea = 20 e/MWh

• B imports 100MWh, priceb = 63.75 e/MWh

• C imports 437.5MWh, pricec = 50 e/MWh

• Welfare = 22 125 e

• Congestion rent = −537.5× 20 + 100× 63.75 + 437.5× 50 = 17 500e

• Order surpluses = 4 625 e

2.3.2 Shadow prices and price formation

Let us first observe that we have the same bidding area market prices but a different set of shadow
prices as we now have the virgin flow-based constraints and LTA constraints (somehow ”scaled”
by the α) to model the network, instead of virtual branches.

However, market price differences are explained by similar relations via the shadow prices of the
PTDF constraints involved, namely:

Relation identical to (25):

pricel = priceFB +
∑
m

ptdfm,lShadowPricem (53)

where priceFB corresponds to the ”system price” now equal to 22.5 = priceFB
a = priceFB

b =
priceFB

c in the example, see (38)-(40).

For example,
pricec = 50 = 22.5 + 55(0.5) + 2.5(0) (54)

We can then also derive:
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Relation identical to (26):

pricek − pricel =
∑
m

ShadowPricem(ptdfm,k − ptdfm,l) (55)

For example, the price difference

priceb − pricea = 63.75− 20 = 43.75 (56)

is equal to

ShadowPriceFB
1 (ptdf1,b − ptdf1,a) + ShadowPriceFB

2 (ptdf2,b − ptdf2,a)

= 55[0.75− 0] + 2.5[0− (−1)] = 43.75 (57)

2.3.3 Congestion rent and LTA coverage

Discussions regarding the congestion rent would be exactly the same as the discussions in Section
2.2.3 for the virtual branch based approach. Only the constraints of the network model needs to
be adapted in the optimization problem for the operation of the transmission system, which is
here:

max congestion rent = 20netposa + 63.75netposb + 50netposc (58)

subject to the network model constraints (35)-(52)

(Conditions (35)-(52)have replaced conditions (18)-(24).)
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3 Observations and practical questions for implementation
in production

3.1 Assessment of performance gains

Let us first emphase that the new extended formulation methodology presented on an example in
Section 2.3 is much more scalable than the approach based on virtual branches: in the extended
formulation approach, the number of constraints required is the number of virgin PTDF constraints
plus the number of LTA capacity constraints and a number of constraints directly proportional to
the number of bidding areas and lines (to link the ”duplicate” net position and flow variables for
respectively the virgin flow-based and LTA domains to their counterpart lying in the convex hull
of the union of these domains).

On the other hand, the virtual branch approach requires to pre-compute a number of PTDF
constraints which becomes quickly very large with an increased number of bidding areas. Also,
the computation of virtual branches becomes itself very challenging.

The added value of the new methodology is hence two-folds:

• For network models with many more bidding areas as for CORE Region, it makes it tractable
to consider the ”tight version” of a LTA coverage process (enlarging the original PTDF
domain ”just enough”).

• For network models with a few more bidding areas as required in some Evolved Flow-Based
modeling applications, it allows to greatly reduce the number of constraints required to
describe the enlarged domain for LTA coverage, with a substantially positive impact on
Euphemia performances.

The following figure 3 shows performance gains with preliminary performance tests for Evolved
Flow-Based with 7 CWE bidding areas (instead of 5) to model the inclusion of the Alegro HVDC
inter-connector, for flow-based plain:

Figure 3: Comparison of Times to First Solution (in seconds), based on Euphemia 10.4, 7 sessions
in November 2018 to April 2019 with inclusion of the Alegro HVDC inter-connector, Flow-Based
Plain (FBP)
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3.2 Interactions with bidding zones outside the balancing area

The modeling alternative only concerns the CWE balancing and the corresponding ”net exports”
(net positions on the balancing area). It has no impact on other bidding areas such as neighbouring
bidding areas connected via ATC lines.

3.3 Interface and PMB changes

For the current prototype implementation, minor changes are needed in the Euphemia input
interface:

• Columns LTA DOWN and LTA UP should be added to table LINE CAPACITIES (alter-
natively, columns CAPACITY UP and CAPACITY DOWN could be used as currently no
capacity is otherwise specified for ”TOP” lines of the CWE area).

• A column (e.g. ISVIRGIN) has to be added to table SESSION BALANCINGAREAS to
indicate if LTAs are to be taken into consideration for the balancing area (note that if the
parameter indicates that LTAs should be considered but an empty LTA domain is provided,
the behavior is similar to the case where no LTAs should be taken into consideration, al-
though extra variables for LTAs not needed in that case would be created).

Note that the virgin PTDF data is provided via the usual tables for PTDF constraints.

To use the feature, the user has to provide a non-empty LTA domain, via table LINE CAPACITIES,
and specify a virgin domain is used via table SESSION BALANCINGAREAS. If the LTA domain
is empty, the behavior is similar to the case where classical PTDF constraints are provided.

Regarding the Euphemia output interface, shadow prices of the virgin flow-based constraints can
be reported as the classical shadow prices of input PTDF constraints. The only new information
of interest would be the shadow prices of constraints of the LTA domain. These shadow prices
directly explain bidding area price differences as in a classic ATC network model (if a ”LTA flow”
occurs between bidding areas with different prices, the shadow price of the LTA capacity is equal
to the price difference, and the ”LTA flow” goes from the cheaper area to the more expensive
area), cf. the example discussed in Section 2 and also price conditions derived in Appendix A.2.
Note that the price difference between bidding areas can also be explained via the shadow prices
of the virgin PTDF constraints, cf. again Section 2 and the example discussed therein.

3.4 Interaction with the intuitiveness patch

Intuitiveness is now enforced via the virgin flow-based domain which might be more restrictive
than when the additional conditions to enforce intuitiveness are related to the enlarged flow-based
domain conv(FB ∪ LTA).

Although this requires further assessment and would require advanced technical work, it should
be possible to circumvent this by generating those additional conditions to enforce intuitiveness
which are related to the enlarged flow-based domain conv(FB ∪ LTA).

3.5 Impact on the adequacy patch

The behavior of the adequacy patch is not impacted by the reformulation of the LTA coverage:
the original net position and flow variables netpos, flow are still available and used for related
computations.
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The only impact on curtailment aspects could in theory come from restrictions of additional
transmission capacities due to intuitiveness being enforced on the virgin flow-based domain which
is more restrictive than enforcing intuitiveness on the enlarged domain after LTA coverage, but
this impact is not specifically related to the adequacy patch.

3.6 Validation of the implementation

To validate the implementation, it is recommended to design various functional tests based on
virtual branches exactly describing conv(FB ∪ LTA), so that market outcome results computed
by Euphemia with virtual branches can be directly compared to market results obtained with the
new methodology which has been prototyped in Euphemia. As discussed in the example above,
with flow-based plain, market results must be identical. With flow-based in intuitive mode, market
results can differ due to the way intuitiveness is, for now, enforced in the new methodology.
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A Extended formulation for LTA inclusion in general

The extended formulation is described here with general notation for sessions with classical step
bid curves. How the formulation is obtained is briefly discussed in Appendix B.

A.1 Welfare maximization model

max
∑
i

QiP ixi (59)

s.t.

∑
i∈Orders(l)

Qixi = netposl [pricel] ∀l ∈ Locations (60)

0 ≤ xi ≤ 1 ∀i (61)

(62)

netposl = ˜netposFB
l + ˜netposLTA

l [p̃ricel] (63)

flowl,k = ˜flowFB
l,k + ˜flowLTA

l,k (64)

α1 + α2 = 1 [η] (65)

α ≥ 0 (66)

∑
l

ptdfm,l
˜netposFB

l ≤ α1 RAMm [ShadowPricem]∀m (67)

˜netposFB
l =

∑
k 6=l

˜flowFB
k,l − ˜flowFB

l,k [priceFB
l ] ∀l ∈ Locations (68)

˜flowFB ≥ 0 (69)

˜flowLTA
l,k ≤ α2 capacity

LTA
l,k [wLTA

l,k ] ∀l, k ∈ Locations (70)

˜netposLTA
l =

∑
k 6=l

˜flowLTA
k,l − ˜flowLTA

l,k [priceLTA
l ] ∀l ∈ Locations (71)

˜flowLTA ≥ 0 (72)

A.2 Shadow prices and price formation

Conditions dual to the variables netposl:

p̃ricel = pricel (73)
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Next conditions are written by taking (73) into account and replacing p̃ricel with pricel.

Conditions dual to the variables netposFB
l :

pricel = priceFB
l +

∑
m

ptdfm,lShadowPricem (74)

Conditions dual to the variables netposLTA
l :

pricel = priceLTA
l (75)

Conditions dual to the variables flowLTA
l,k ≥ 0:

wLTA
l,k ≥ priceLTA

k − priceLTA
l (76)

Using the associated complementary condition flowLTA
l,k (wLTA

l,k − priceLTA
k + priceLTA

l ) = 0, we
have:

flowLTA
l,k > 0⇒ priceLTA

k − priceLTA
l = wLTA

l,k ≥ 0 (77)

Conditions dual to the variables fFB
l,k ≥ 0:

0 ≥ priceFB
k − priceFB

l (78)

Considering (78) for all pairs l, k gives priceFB
k = priceFB

l (assuming that locations form a con-
nected component), and conditions (74) can be rewritten as:

pricel = priceFB +
∑
m

ptdfm,lShadowPricem, (79)

where priceFB corresponds to the ”system price”.

We then have the usual relations:

pricek − pricel =
∑
m

ShadowPricem(ptdfm,k − ptdfm,l) (80)

A.3 Congestion rent and LTA coverage

We show here with general notation that with the LTA coverage methodology, the congestion rent
is always sufficient to cover LTA liabilities.

Let us consider an optimal solution (x, netpos, flow) to the welfare maximization problem (59)-
(72) and consider the market prices price∗l obtained as optimal dual variables of (60).

We want to prove the following inequality:

∑
l

netpos∗l price
∗
l ≥

∑
l,k

(price∗k − price∗l )+capacityLTA
l,k (81)

The congestion rent appears on the left-hand side of the inequality and is expressed as the revenue
from operating the transmission network, i.e. realized from the buy/sell operations: netpos∗l > 0
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if a volume is sold by the operator to location l, netpos∗l < 0 if a volume is bought from location
l and the left-hand side represents the sum of the associated money transfers given the locational
market prices price∗l .

The right-hand side represents LTA liabilities. The notation (price∗k − price∗l )+ means the price
in location k minus the price in location l counted only of the price is higher in location k, and
0 otherwise ((price∗k − price∗l )+ is hence non-null only if the price in location k is higher than
in location l, in which case (price∗k − price∗l )+ is equal to that price difference). Multiplying
(price∗k − price∗l )+ by the volume of LTA rights in the direction l → k denoted by capacityLTA

l,k ,
and summing up over all possibilities for l, k, provides the total LTA liabilities.

To prove (81), we will use the fact that (netpos∗, f low∗) obtained from the market clearing process
solves the following profit maximization problem for the transmission system, where locational
market prices price∗ are fixed parameters and where the operator seeks to find best import/export
decisions (netpos, flow) given those prices and assuming ”infinite market depth” (i.e. without
worrying about the order books):

max
(netpos,flow)

∑
l

netposl price
∗
l (82)

s.t. to network constraints (63)-(72).

To prove the inequality (81), it is hence sufficient to find a solution (netpos, flow) feasible for
(63)-(72) such that:

∑
l

netposl price
∗
l ≥

∑
l,k

(price∗k − price∗l )+capacityLTA
l,k , (83)

as the congestion rent is at least as high as the left-hand side.

Such a feasible solution can be straightforwardly constructed as the network model has been
enlarged for that purpose, and can be given by:

flowl,k = flowLTA
l,k := capacityLTA

l,k if price∗k > price∗l

flowl,k = flowLTA
l,k := 0 if price∗k ≤ price∗l

netposl = netposLTA
l :=

∑
k 6=l

(flowk,l − flowl,k) =
∑
k 6=l

(flowLTA
k,l − flowLTA

l,k )

αLTA = 1

αFB := 0, netposFB
l := 0, f lowFB

l,k := 0
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B From convex combinations to the extended formulation
for conv(FB ∪ LTA)

A convex combination of two points x, y is the set of points that can be written as α1x+α2y with
α1 + α2 = 1, α1 ≥ 0, α2 ≥ 0.

It is the goal of the constraints (87)-(96) where one makes a convex combination of a point
(netposFB , f lowFB) in the flow-based domain described by conditions (91)-(93) and a point in the
LTA domain described by conditions (94)-(96). These constraints (87)-(96) are then transformed
via a substitution of variables into the formulation (63)-(72). Details follow in next paragraphs,
where cases with α1 = 0 or α2 = 0 are also discussed.

For α1 > 0, α2 > 0, α1 + α2 = 1, constraints (91)-(93) are fully equivalent to the original flow
based constraints (just multiplied by a strictly positive number α1) and constraints (94)-(96) are
similarly fully equivalent to the original LTA constraints.

Making the substitution ˜netposFB := α1netpos
FB , ˜flowFB := α1flow

FB , ˜netposLTA := α2netpos
LTA, ˜flowLTA :=

α2flow
LTA then exactly provides the extended formulation (63)-(72) in Appendix A.

Let us check that this formulation (63)-(72) also works when α1 = 0 or α2 = 0.

If α1 = 0, α2 = 1, assuming the PTDF polyhedron is bounded5, only the solution ˜netposFB =

0, ˜flowFB = 0 is feasible for (67)-(69) and we actually pick-up a point in the LTA domain, as
constraints (70)-(72) with α2 = 1 are the original LTA constraints. Similarly, if α1 = 1, α2 = 0,

it implies that ˜netposLTA = 0, ˜flowLTA = 0 and we actually pick up a point in the flow-based
domain, as constraints (67)-(69) with α1 = 1 are the original flow-based constraints.

max
∑
i

QiP ixi (84)

∑
i∈Orders(l)

Qixi = netposl (85)

0 ≤ xi ≤ 1 ∀i (86)

netposl = α1 netposFB
l + α2 netposLTA

l (87)

flowl,k = α1 flowFB
l,k + α2 flowLTA

l,k (88)

α1 + α2 = 1 (89)

α ≥ 0 (90)

α1

∑
l

ptdfm,l netposFB
l ≤ α1RAMm (91)

α1netpos
FB
l = α1

∑
k 6=l

(flowFB
k,l − flowFB

l,k )

(92)

α1flow
FB ≥ 0 (93)

α2flow
LTA
l,k ≤ α2capacity

LTA
l,k (94)

α2netpos
LTA
l = α2

∑
k 6=l

(flowLTA
k,l − flowLTA

l,k )

(95)

α2flow
LTA ≥ 0 (96)

5We refer to the reference [2] for the general case where polyhedra P1, P2 involved in the present method to
describe conv(P1 ∪ P2) are unbounded.
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C An example illustrating the difference between conv(P1 ∪
P2) and conv(P1 ∪ P2)

Consider:

• P1 = {(x, y)|y = 1}, the blue line in the figure 4 below,

• P2 = {(x, y)|x = 2, y = 2}, the red point in the figure 4 below.

𝑷𝟐 = { 𝒙, 𝒚 | 𝒙 = 𝟐, 𝒚 = 𝟐} 𝑷𝟐 = { 𝒙, 𝒚 | 𝒙 = 𝟐, 𝒚 = 𝟐}

𝑷𝟏 = { 𝒙, 𝒚 | 𝒚 = 𝟏} 𝑷𝟏 = { 𝒙, 𝒚 | 𝒚 = 𝟏}

Figure 4: Difference between conv(P1 ∪ P2) and conv(P1 ∪ P2).

One can check that all the possible convex combinations of the red point P2 and a point in the
blue line P1 are all the points between the blue line included, and the dotted green line excluded,
plus the red point: the dotted green line is a part of the boundary which is not included in
”conv(P1 ∪ P2)”. Formally:

conv(P1 ∪ P2) = {(x, y)|(y ≥ 1, y<2)} ∪ {(x = 2, y = 2)} (97)

This set cannot be described as a polyhedron, i.e. via non-strict linear inequalities.

However, if we include the boundary green line, cf. the right-hand side of figure 4, i.e. we consider
”conv(P1 ∪ P2) plus its boundary included”, which is written conv(P1 ∪ P2), one has:

conv(P1 ∪ P2) = {(x, y)| y ≥ 1, y ≤ 2} (98)

which is now a polyhedron.

For applications in optimization, one needs to work with the second option (otherwise, maximum
or minimum might not exist).
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