

Reading Guide: Capacity Calculation & Market Coupling KPIs

Version	0.1	
Date	12-01-2023	
Status	🛛 Draft	Final

Document creation and distribution

Document Owner	Core IDCC KPI TF
Function	
File location	
Distribution	

Approval

Version	Date	Name	Function	Signature

Previous versions

Version	Date	Author	Summary of changes

Related documents

Attachments

Contents

1	Introd	luction	3
2	KPIs		3
2	.1. A [.]	TC related KPIs	3
_	2.1.1. (or neg	KPI 1 - Duration curve of Core oriented bidding zone borders with simultaneous zero rative) ID ATCs	3
	2.1.2. and Co	KPI 2 – Frequency of zero (or negative) ID ATCs by oriented Core bidding zone border average	, 4
	2.1.3. both di	KPI 3 – Frequency of isolated BZs of zero (or negative) ID ATCs in import, export and irections	5
	2.1.4. Core av	KPI 4 – Mean positive and negative ID ATCs by oriented Core bidding zone border, an verage	nd 6
2	.2. TS	SOs' adjustment after validation	7
	2.2.1.	KPI 5 - Share of MTUs with intervention per TSO	7
2	.3 Li	miting elements	9
	2.3.1	KPI 6 - Limiting constraints of the ATC domain	9
	2.3.2	KPI 7 - Most often pre-solved CNECs	11
2	.4 N	et positions	13
	2.4.1	KPI 8 - Min and Max Net Positions per bidding zone	13

1 Introduction

According to Article 26(4) of the Core Flow-based Intraday Capacity Calculation Methodology (ID CCM) Core TSOs shall continuously monitor the effects and the performance of the application of this methodology during the parallel run. For this purpose, they shall develop, in coordination with the Core regulatory authorities, the Agency and stakeholders, the monitoring and performance criteria and report on the outcome of this monitoring on quarterly basis in a quarterly report. The developed set of Key Performance Indicators (KPIs) will be published on a monthly basis on JAO.

The document at hand aims to introducing the reader solely to the calculated KPIs. It is not intendend to be a general introduction to Core flow-based capacity calculation process.

2 KPIs

2.1. ATC related KPIs

2.1.1. KPI 1 - Duration curve of Core oriented bidding zone borders with simultaneous zero (or negative) ID ATCs

Short Name of KPI	KPI 1 - Duration curve of oriented BZ borders with simultaneous zero (or negative) ID ATCs
Article ID CCM	Article 21. Calculation of ATCs for SIDC fallback procedure
Granularity	Per timestamp, per oriented BZ border
Aggregation	Over all Core BZ borders and over reporting period

KPI Description

KPI 1 analyses how frequent is occurrence of certain number of oriented bidding zone borders with zero or negative ATCs extracted from the final intraday flow-based domain according to Art.21 of ID CCM.

For creation of the duration curve, all timestamps with the same number of oriented BZ borders with zero or negative ATC values are counted and this number is divided by the number of all timestamps of the analysed period. This is done for all 38 oriented bidding zone borders of the Core region as a whole. As a result a duration curve is plotted showing the frequency of occurrence of different number of borders with zero or negative ATCs.

In the illustrative example below you can see that there wasn't any timestamp with simultaneous zero or negative ATCs on more than 19 oriented bidding zones of the Core region. Approximately 50% of the time there were 6 or less Core oriented bidding zone borders with zero or negative ATCs. In general, the lower the curve is, the better are the results.

Example Visualisation

2.1.2. **KPI 2** – Frequency of zero (or negative) **ID ATCs** by oriented Core bidding zone border, and Core average

Short Name of KPI	KPI 2 - Frequency of zero (or negative) ID ATCs by oriented BZ border
Article ID CCM	Article 21. Calculation of ATCs for SIDC fallback procedure
Granularity	Per timestamp, per oriented BZ border
Aggregation	Over all Core BZ borders and over reporting period

KPI Description

KPI 2 analyses how often are the ATCs extracted from the final intraday flow-based domain according to Art.21 of ID CCM zero or negative and therefore trading on certain oriented BZ border is not possible.

For calculation of the frequency of zero or negative ATCs, all timestamps with zero or negative ATC values are counted and this number is divided by the number of all timestamps of the analysed period. This is done for each oriented bidding zone border separately and also for all Core borders in total (last bar on the graph).

Example Visualisation

2.1.3. KPI 3 – Frequency of isolated BZs of zero (or negative) ID ATCs in import, export and both directions

Short Name of KPI	KPI 3 – Frequency of isolated BZs in import, export and both directions
Article ID CCM	Article 21. Calculation of ATCs for SIDC fallback procedure
Granularity	Per timestamp, per oriented BZ border
Aggregation	Over all Core BZ borders and over reporting period

KPI Description

KPI 3 analyses how often are the bidding zones isolated in various directions, meaning no trading in import, export or both directions is possible.

For calculation of the frequency of isolation in import direction, all timestamps where all oriented BZ borders in import direction of a certain bidding zone XX (e.g. $AA \rightarrow XX$, $BB \rightarrow XX$ and $CC \rightarrow XX$) have zero or negative ATC values are counted and this number is divided by the number of all timestamps of the analysed period. This is done for each bidding zone. The results show for each bidding zone how often is trading in import direction not possible because all import borders of the BZ are blocked by zero or negative ATCs.

For calculation of the frequency of isolation in export direction, all timestamps where all oriented BZ borders in export direction of a certain bidding zone XX (e.g. $XX \rightarrow AA$, $XX \rightarrow BB$ and $XX \rightarrow CC$) have zero or negative ATC values are counted and this number is divided by the number of all timestamps of the analysed period. This is done for each bidding zone. The results show for each bidding zone how often is trading in export direction not possible because all export borders of the BZ are blocked by zero or negative ATCs.

For calculation of the frequency of isolation in both directions, all timestamps where all oriented BZ borders in both import and export directions of a certain bidding zone XX (e.g. $AA \rightarrow XX$, $BB \rightarrow XX$, $CC \rightarrow XX$, $XX \rightarrow AA$, $XX \rightarrow BB$ and $XX \rightarrow CC$) have zero or negative ATC values are counted and this number is divided by the number of all timestamps of the analysed period. This is done for each bidding zone. The results show for each bidding zone

2.1.4. KPI 4 – Mean positive ID ATCs by oriented Core bidding zone border, and Core average

Short Name of KPI	KPI 4 – Mean positive ID ATCs by oriented Core BZ border
Article ID CCM	Article 21. Calculation of ATCs for SIDC fallback procedure
Granularity	Per timestamp, per oriented BZ border
Aggregation	Over all Core BZ borders and over reporting period

KPI Description

KPI 4 analyses levels of ATCs extracted from the final intraday flow-based domain according to Art.21 of ID CCM.

For calculation of mean positive ATCs, positive values from all timestamps of the analysed period are summed up and divided by the number of timestamps where ATC are positive. This is done for each oriented bidding zone border separately and also for all Core borders in total (last bar on the graph).

Example Visualisation

2.2. TSOs' adjustment after validation

	-
Short Name of KPI	KPI 5 - Share of timestamps with intervention per TSO
Article in ID CCM	Article 19. Validation of flow-based parameters
Granularity	Per timestamp
Aggregation	Per TSO and over reporting period

2.2.1. KPI 5 - Share of MTUs with intervention per TSO

KPI Description

During the validation process TSOs perform a security analysis upon the initial FB domain. In case the grid cannot be secured despite the use of remedial actions, the capacity (RAM) on a CNEC can be reduced. The amount of reduction of capacity (in MW) is the IVA. This KPI is based on the IVA value in MW as reported in the final flow-based domain.

It has three parts:

1) Share of MTUs with IVA intervention per TSO

Share of MTUs with $IVA = \frac{Sum \ of \ distinct \ MTUs \ with \ IVA \ applied}{Total \ of \ MTUs}$, with total of MTUs equal to the number of business days labelled as technically representative within the reporting period * 24.

Practical examples with 10 BDs (240 MTUs):

- TSO A has reduced the capacity for 1 CNE during all 120 MTUs.

• Share of MTUs with $IVA = \frac{120}{240} = 50\%$

- TSO B has reduced the capacity for **10** CNEs during **1** MTU.

• Share of MTUs with IVA =
$$\frac{1}{240} = \sim 0, 42\%$$

2) Graphical representation of the aggregated applications of IVAs

IVA min, max, average on the primary y axis and all aggregated IVA applications on the secondary y axis (everything per TSO on x axis)

3) Table with top 10 most reduced CNECs per TSO with additional data aggregations

All data are taken from the final flow based domain report file and are aggregated only in case of IVA was applied. For example RAM/Fmax represents average RAM in the final flow based domain file divided by its Fmax when on certain CNEC was IVA applied. The same applies to all other columns.

Example Visualisation

1)

	TSO	Distinct MTUs with IVA	Share of distinct MTUs with IVA (%)
-	50477	0.0	0.0
	501121	0.0	0.0
1	AMP	0.0	0.0
2	APG	19.0	1.6
3	CEPS	0.0	0.0
4	ELES	0.0	0.0
5	ELIA	0.0	0.0
6	HOPS	104.0	8.7
7	MAVIR	0.0	0.0
8	PSE	0.0	0.0
9	RTE	0.0	0.0
10	SEPS	0.0	0.0
11	TEL	0.0	0.0
12	TNG	0.0	0.0
13	TTG	0.0	0.0
14	TTN	0.0	0.0

		IVA count	average IVA	IVA/Fmax (%)	RAM/Fmax (%)	min IVA	max IVA
TSO	CNEC						
	[AT-HU] Neusiedl - Gyoer 246B [OPP] [AT] / N-1 Gyor - Wien	15	74.866667	31.994302	54.871795	10.0	159.0
	[AT-SI] Obersielach - Podlog 247 [OPP] [AT] / N-1 Maribor-Kainachtal 1	15	84.333333	22.549020	40.677362	28.0	169.0
	[AT-SI] Obersielach - Podlog 247 [OPP] [AT] / N-1 Kainachtal - Obersielach 471	14	83.857143	22.421696	37.280367	20.0	167.0
	[AT-SI] Obersielach - Podlog 247 [OPP] [AT] / N-1 Cirkovce-Podlog	12	77.416667	20.699643	38.948307	25.0	143.0
APC	[AT-CZ] Duernrohr 1 - Slavetice 437 [OPP] [AT] / N-1 Slavetice - Durnrohr 2	7	589.142857	27.000131	18.639518	135.0	951.0
Ald	[AT-HU] Wien Suedost - Gyoer 245 [DIR] [AT] / N-1 Gyor - Neusiedl	7	179.000000	76.495726	22.039072	51.0	250.0
	[AT-SI] Obersielach - Podlog 247 [OPP] [AT] / N-1 Cirkovce-Krsko	7	97.142857	25.974026	21.008403	28.0	142.0
	[AT-AT] Zaya 2 - Zaya 1 ZYRHU41 [DIR] / N-1 Slavetice - Durnrohr 1	6	275.000000	49.460432	11.390887	110.0	555.0
	[AT-AT] Zurndorf 1 - Szombathely 1 440B [OPP] / BASECASE	5	1081.600000	78.093863	13.675090	984.0	1156.0
	[AT-AT] Obersielach - Obersielach OSRHU41 [OPP] / N-1 Obersielach - Obersielach OSRHU42	4	490.750000	80.981848	-10.189769	381.0	564.0
	[HR-HU] 400kV Ernestinovo - Pecs 1 [OPP] [HR] / N-1 Ernestinovo - Pecs 2	64	73.187500	5.502820	48.425752	2.0	158.0
	[HR-HU] 400kV Ernestinovo - Pecs 2 [OPP] [HR] / N-1 Ernestinovo - Pecs 1	64	73.187500	5.502820	48.425752	2.0	158.0
	[HR-SI] 220kV Pehlin - Divaca [DIR] [HR] / N-1 Melina - Divaca	38	40.973684	10.955531	69.863496	1.0	135.0
HOPS	[HR-SI] 220kV Pehlin - Divaca [OPP] [HR] / N-1 Melina - Divaca	13	4.230769	1.131222	84.594817	1.0	6.0
	[HR-SI] 400kV Tumbri - Krsko 1 [OPP] [HR] / N-1 Tumbri - Krsko 2	12	3.166667	0.238095	70.758145	2.0	6.0
	[HR-SI] 400kV Tumbri - Krsko 2 [OPP] [HR] / N-1 Tumbri - Krsko 1	12	3.166667	0.238095	70.758145	2.0	6.0
	[HR-HR] 400kV Zerjavinec - Tumbri [OPP] / BASECASE	3	23.000000	1.729323	76.065163	23.0	23.0

2.3 Limiting elements

2.3.1 KPI 6 - Limiting constraints of the ATC domain

Short Name of KPI	KPI 6 – Limiting constraints of the ATC domain
Article in ID CCM	Article 21. Calculation of ATCs for SIDC fallback procedure
Granularity	Per timestamp
Aggregation	Per TSO and per CBCO

KPI Description

The constrains having 0 margin after ID ATC computation are those which determine / limit the ATC domain. The remaining margin of the constraint calculated during iterative process will reach 0 (or negative but forced to 0 since negative RAM is currently not allowed) and prevent ATC of corresponding directions increasing further. When RAM = 0 MW for one critical constraint, it will limit ATC=0 for the border directions with positive zone-to-zone PTDFs.

The KPIs will include the

- Th list of top 20 most frequently limiting constraints of the ATC domain
- Per TSO: Generate a diagram with the mean and max number of limiting constraints at TSO level for a certain period of time (example below). Note if the same CNE limited the domain 24 hours a day, then it needs to be counted as 24 in the mean calculation
- Per CBCO: Generate a diagram with the mean and max number of limiting constraints at CBCO level with the mean and max number of limiting constraints at TSO level for a certain period of time (example below).

	% of hours when
20 most ATC limiting constraints	CBCO is limiting
	(09.06-01.08)
[HU-HU] Gonyu - Gyor [DIR] / N-1 Gabcikovo - Gyor	40,15%
[AT-SI] Obersielach - Podlog 247 [DIR] [AT] / N-1 Cirkovce-Podlog	29,30%
[SI-HU] Cirkovce - Heviz [OPP] [HU] / N-1 Zerjavinec - Heviz	21,24%
[D8-PL] Mikulowa PST1 [OPP] [PL] / N-1 Hagenwerder - Mikulowa 1	18,51%
[D8-PL] Mikulowa PST2 [OPP] [PL] / N-1 Hagenwerder - Mikulowa 1	18,51%
[SK-SK] V.Dur - Levice 1 [DIR] / N-1 V.Dur - Levice 2	16,70%
[AT-AT] Westtirol 1 - Westtirol 2 WTRHU41 [DIR] / N-1 Westtirol - Voehringen	15,76%
[CZ-D8] Hradec - Rohrsdorf 446 [OPP] [D8] / N-1 Hradec - Rohrsdorf 1	14,15%
[D8-D8] Neuenhagen - Vierraden 304 [DIR] [D8] / N-1 TR Vierraden 220/400 404	12,43%
[D8-D8] Neuenhagen - Vierraden 304 [DIR] [D8] / N-1 Vierraden - Pasewalk 306	12,43%
[CZ-SK] Nosovice - Varin [DIR] [SK] / N-1 Krizovany - Sokolnice	10,28%
[CZ-SK] Nosovice - Varin [DIR] [CZ] / N-1 Krizovany - Sokolnice	10,28%
[D8-D8] Pasewalk - Vierraden 306 [DIR] / N-1 TR Vierraden 220/400 402	9,21%
[AT-SI] Obersielach - Podlog 247 [OPP] [AT] / N-1 Cirkovce-Podlog	8,33%
[D8-D8] Pasewalk - Vierraden 306 [DIR] / N-1 Bertikow - Vierraden 304-303	7,59%
[HR-SI] 220kV Pehlin - Divaca [DIR] [HR] / N-1 Melina - Divaca	7,53%
[SI-HR] 220kV Divaca - Pehlin [OPP] [SI] / N-1 Melina - Divaca	7,49%
[D2-NL] Diele - Meeden SCHWARZ [DIR] [D2] / N-1 Diele - Meeden WEISS/W	5,61%
[D2-NL] Diele - Meeden WEISS [DIR] [D2] / N-1 Diele - Meeden SCHWARZ/Z	5,61%
[HU-AT] Gyor - Wien [OPP] [HU] / N-1 Neusiedl - Wien Suedost 246A	5,07%

Example Visualisation

1) Per TSO

2.3.2 KPI 7 - Most often pre-solved CNECs

Short Name of KPI	KPI 7 – Most often pre-solved CNECs
Article in ID CCM	Article 19. Validation of flow-based parameters
Granularity	Per timestamp
Aggregation	Per TSO and per CBCO

KPI Description

During the final FB computation, the presolved FB domain provides the list of FB domain limiting (presolved) constraints which will be used as an input domain to the ID ATC extraction.

The KPIs will include the

- The list of top 20 most frequently limiting constraints of the final FB domain
- Per TSO: Generate a diagram with the mean and max number of presolved constraints at TSO level for a certain period of time (example below). Note if the same CNEC limited the final FB domain 24 hours a day then it needs to be counted as 24 in the mean calculation

• Per CBCO: Generate a diagram with the mean and max number of presolved constraints at CBCO level with the mean and max number of presolved constraints at TSO level for a certain period of time (example below).

	% of hours	
	when CBCO	
20 most limiting presolved constraint	is limiting	
	(09.06-01.08)	
[HR-SI] 220kV Pehlin - Divaca [OPP] [HR] / N-1 Melina - Divaca	75,56%	
[HU-HU] Gonyu - Gyor [DIR] / N-1 Gabcikovo - Gyor	75,38%	
[SI-HU] Cirkovce - Heviz [OPP] [HU] / N-1 Zerjavinec - Heviz	75,14%	
[HR-SI] 220kV Pehlin - Divaca [DIR] [HR] / N-1 Melina - Divaca	75,03%	
[SK-HU] Levice - God [DIR] [HU] / N-1 R.Sobota - Sajoivanka	74,48%	
[CZ-SK] Nosovice - Varin [OPP] [CZ] / N-1 Krizovany - Sokolnice	73,26%	
[RO-RO] TR Rosiori 400/220 1 [DIR] / N-1 Rosiori - Gadalin	72,85%	
[SI-HU] Cirkovce - Heviz [DIR] [HU] / N-1 Zerjavinec - Heviz	72,19%	
[SK-SK] V.Dur - Levice 1 [DIR] / N-1 V.Dur - Levice 2	72,05%	
[CZ-SK] Nosovice - Varin [DIR] [CZ] / N-1 Krizovany - Sokolnice	70,00%	
[CZ-AT] Slavetice - Durnrohr - V438 [DIR] [CZ] / N-1 Slavetice - Durnrohr 1	69,13%	
[AT-SI] Obersielach - Podlog 247 [OPP] [AT] / N-1 Cirkovce-Podlog	68,72%	
[SK-CZ] Krizovany - Sokolnice [OPP] [SK] / N-1 Sokolnice - Stupava	68,40%	
[AT-SI] Obersielach - Podlog 247 [DIR] [AT] / N-1 Cirkovce-Podlog	68,33%	
[CZ-SK] Nosovice - Varin [OPP] [SK] / N-1 Sp.Nova Ves - Lemesany	68,06%	
[CZ-D8] Hradec - Rohrsdorf 446 [OPP] [D8] / N-1 Hradec - Rohrsdorf 1	67,08%	
[RO-RS] Portile de Fier - Djerdap [OPP] [RO] / N-1 Tantareni-Kozlodui	65,17%	
[CZ-SK] Sokolnice - Senice [OPP] [CZ] / N-1 Krizovany - Sokolnice	65,07%	
[CZ-SK] Sokolnice - Senice [DIR] [CZ] / N-1 Krizovany - Sokolnice	62,29%	
[CZ-SK] Nosovice - Varin [DIR] [SK] / N-1 Sp.Nova Ves - Lemesany	61,32%	

Example Visualisation

1) Per TSO

2) Per CBCO

2.4 **Net positions**

2.4.1 **KPI 8 - Min and Max Net Positions per bidding zone**

KPI 8 – Min and Max Net Positions per bidding zone
Article 23. Publication of data
Per Timestamp
No aggregation

KPI Description

This KPI is meant to give an overview of the upper and lower bound of the capacities offered to the market.

Min and Max net positions are provided per bidding zone and per timestamp. This KPI is an output of the capacity calculation process and subject to publication as required by the CCM in article 23.2.b.i.

This KPI is a combination of specific net positions meaning that Min and Max net positions for different bidding zones are mostly exclusive and mostly theoretical.

In addition to Min and Max NPs calculated based on final FB domain, second part of this KPI shows minimum and maximum net positions computed from extracted ATCs. While allocation is in ATC this way of calculation relates more to the actual possibilities of the market.

E.g. max NP of FR would be ATC FR-->BE + ATC FR-->DE.

