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1 Introduction 

1.1 Context 

The JAO capacity auctions allocate cross-border transmission capacity to market participants 

based on their bids. Historically, the auction clearing algorithm has operated per hour (Market 

Time Unit, MTU) and only with single-hour bids. Each hour is treated independently, and the 

algorithm selects the set of bids that maximizes social welfare under capacity constraints. 

Market development and participant needs have led to the introduction of block bids, which 

allow participants to express “all-or-nothing” demand for capacity across multiple hours. At the 

same time, the time resolution of the auction has evolved: from a 60-minute resolution to a finer 

15-minute MTU resolution at corridor level. To accommodate both legacy 60-minute products 

and new 15-minute products on the same border, the following design choice is adopted: 

• The underlying MTU resolution for the optimization is 15 minutes. 

• Every “60-minute bid” is modeled as a block bid spanning the four 15-minute 

intervals within the same clock hour. 

• Block bids are indivisible and cannot be partially accepted, so it must be accepted in full 

or rejected in full (“all-or-nothing”). 

• As a result, what we will call single-hour bids become, in implementation terms, 

15-minute bids, and block bids naturally represent:  

o 60-minute products (4 consecutive 15-minute MTUs within an hour), and 

o Longer multi-hour products (blocks spanning several 15-minute intervals across 

hours). 

The inclusion of block bids significantly increases the complexity of the auction. This report 

explains how we integrate these block bids into the existing framework using Benders 

decomposition, in a way that: 

• Maximizes overall welfare. 

• Preserves consistency with existing hourly clearing. 

• Respects business rules and fairness considerations. 

• Remains computationally tractable for operational use. 

This document explains the logic and implications of the chosen approach. 



 

 

 
 

2 Current Auction Design: Single-Hour Bids 

2.1 Objective: Maximizing Social Welfare 

In the current setup (without block bids), the auction is cleared separately for each hour. For a 
given hour, the algorithm: 

• Receives a set of single-hour bids (SHBs). 

• Each bid has:  

o A source and sink control area. 

o A quantity (MW) requested. 

o A bid price (€/MWh). 

The algorithm’s goal is to: 

maximizes social welfare through a basic optimization subject to available 

transmission capacity and bid quantity limits, followed by a post-processing 

logic for “pro-rata”s. 

The objective function consists of the following: 

𝑜𝑏𝑗 = max ( ∑ [𝑝𝑏(𝑥,𝑦,𝑏). 𝑑𝑎(𝑥,𝑦,𝑏)]

𝑋,𝑌,𝐵

) 

2.2 Constraints 

For each hour, the main constraints are: 

1. Bid quantity constraints 

o The accepted quantity for a bid cannot exceed the offered quantity. 

o Accepted quantity must be non-negative. 

2. Available Transfer Capacity (ATC) constraints 

o The total net flow over each border cannot exceed the offered ATC for that hour. 

o The formulation may vary depending on the technical profile (TP), but 

conceptually:  

▪ “Total flow using that border ≤ ATC for that border and hour.” 

2.3 Auction price and Shadow prices 

From this optimization, we derive shadow prices (dual variables) associated with ATC 
constraints. These shadow prices: 



 

 

 
 

• Represent the implicit marginal value of capacity at a border and hour. 

• When aggregated for all relevant constraints on a given source–sink path, they 
determine the auction price (AP) for that path. 

Two simple rules then govern single-hour bids: 

• Bids with price above the AP: fully accepted. 

• Bids with price below the AP: fully rejected. 

This gives a transparent, rule-based outcome in each hour and ensures that: 

• Capacity is allocated to the highest-valued uses. 

• The calculation of AP is consistent with the constraints and clearing outcome. 

3 Introducing block bids 

3.1 Business rules 

Different business rules are possible. They must be defined by the TSOs. 

To align block bids with the existing hourly pricing framework, we propose the following rules: 

1. All single-hour bids with price higher than or equal to the auction price (AP) are fully 
accepted. 

2. All single-hour bids with price strictly lower than the auction price (AP) are fully 
rejected. 

3. All block bids with block price strictly lower than the auction price (AP) for at least 
one time interval must be rejected. 

4. All block bids with block price higher than or equal to the auction price (AP) for all 
time intervals can be accepted. 

3.2 Complexity induced by block bids 

Block bids create two fundamental challenges: 

1. Inter-temporal linkage 

o Decisions are no longer hour-by-hour: accepting a block ties together all hours in 

its block. 

o A block might be profitable in some hours and unprofitable in others, but still 

beneficial overall. 

2. All-or-nothing decisions 

o Each block is represented by a binary decision: accepted (1) or rejected (0). 



 

 

 
 

o The problem becomes a Mixed-Integer Linear Program (MILP), which is 

significantly harder to solve than a single LP per hour and cannot include the 

business rules logic in it. 

Therefore, the Benders decomposition is used to retain the modular structure and leverage 

the existing hourly clearing logic. 

4 Conceptual Framework: bilevel perspective 

Before describing Benders, it is useful to think of the problem as a bilevel model: 

• Upper level (leader): decides which block bids to accept (binary variables). 

• Lower level (follower): performs the clearing of single-hour bids, for each MTU 

separately and simultaneously, given the remaining capacity after blocks are accepted. 

The lower-level problem is the familiar: 

• Per-hour welfare maximization for single-hour bids. 

• Subject to ATC constraints and bid quantity constraints. 

This lower-level problem is convex (linear) and satisfies strong duality, which means: 

• The follower’s optimal objective equals the optimal value of its dual problem. 

• This property is a key enabler for Benders decomposition: it allows the use of dual 

(shadow price) information to guide the upper-level decisions. 

 

5 Benders Decomposition  

5.1.1 Basic principle 

Benders decomposition splits the original complex problem into two linked pieces: 

1. A master problem:  

o Handles the complicating variables: here, the binary block acceptance 

decisions. 

o Operates at a more aggregated level. 

2. A subproblem:  

o Handles the continuous variables: here, the single-hour bids and flows. 

o Retains the existing structure of the hourly auction. 

The method proceeds iteratively: 



 

 

 
 

1. The master proposes a candidate set of block acceptances. 

2. The subproblem clears the market for single-hour bids under those choices. 

3. Dual information from the subproblem is used to add a Benders cut to the master 

problem, refining its understanding of the welfare impact. 

4. The master is re-solved with the new cut, proposing a new combination of blocks. 

5. This repeats until convergence. 

At convergence, the combination of block acceptances and hourly clearing is globally 

welfare-optimal under the model and constraints. 

5.1.2 Master problem (MILP, small) 

The master problem is the “decision-maker” for block bids. It: 

• Decides, for each block bid, whether it is accepted (1) or rejected (0). 

• Ensures that the sum of accepted block quantities on each border and hour does not 

exceed the available ATC, so that the subproblem remains feasible. 

• Estimates the resulting welfare from the single-hour bids, without explicitly solving the 

full single-hour problem inside the master. 

To achieve this, the master problem includes: 

• Binary variables indicating block acceptance. 

• A proxy variable, called θ (theta), representing:  

o “The best total welfare contribution from all single-hour bids, given the capacity 

remaining after accepting these blocks.” 

• Feasibility cuts that enforce basic capacity consistency:  

o For each border and hour, the sum over all accepted blocks of (block quantity × 

acceptance binary) must be less than or equal to the ATC for that border and 

hour. 

The master objective is: 

𝐹𝑚𝑎𝑠𝑡𝑒𝑟 = max (∑ ∑ 𝑝𝑏𝑏 . 𝑑𝑏𝑏 . 𝑦𝑏𝑏

ℎ∈𝐻𝑏𝑏𝑏

+ 𝜃) 

5.1.2.1 Why use θ? 

θ is a placeholder for the subproblem’s optimal welfare. 



 

 

 
 

Initially, θ is unconstrained above (it could take any large value). 

As we solve subproblems and collect information, we add constraints (Benders cuts) that 

lower the upper bound on θ, making it more accurate. 

At the same time, the feasibility cuts on block quantities vs. ATC ensure that the master 

never proposes a block-acceptance pattern that would make the subproblem infeasible. 

This feasibility cut in the master problem ensures that the sum of accepted block quantities 

never exceeds ATC on any border and hour. Because the subproblem allows zero accepted 

quantity of single-hour bids and does not include additional minimum-acceptance or 

intertemporal constraints, this is sufficient to guarantee that the subproblem is always feasible.  

This keeps the master problem: 

• Relatively small: mostly binary block variables plus θ. 

• Efficient and robust: we avoid wasted iterations on subproblems that would fail due to 

impossible capacity over-commitment by blocks. 

The master problem is structured to answer: “Which blocks should be 

accepted?” in a compact and feasible way, while treating the detailed hourly 

clearing of single‑hour bids through θ and Benders cuts. This separation 

makes the problem solvable at scale and allows adding business-specific 

“cuts” to deal with paradoxical block bids. Feasibility cuts ensure that the sum 

of accepted block quantities never exceeds ATC on any border and hour, so 

the combined master + subproblem formulation remains feasible by 

construction. 

5.1.3 Subproblem (LP, fast) 

For a fixed block acceptance pattern (a fixed 𝑦 = 𝑦̅) and for each MTU: 

• The subproblem receives the remaining ATC per border and hour, after accounting for 

capacity used by accepted blocks. 

• It then runs the standard single-hour auction LP, for all hours separately:  

o Maximizes welfare of single-hour bids. 

o Respects ATC and per-bid quantity constraints. 

Its outputs include: 

• The optimal welfare contribution from all single-hour bids under the given block 

pattern. 



 

 

 
 

• The dual variables (shadow prices) associated with the ATC and bid constraints. 

The subproblem objective is the following: 

𝐹𝑠𝑢𝑏 = 𝑉(𝑦̅) = max (∑ 𝑝𝑏,ℎ . 𝑑𝑏,ℎ

𝑏

) 

The problem is a standard single hour auction clearing LP. It is solved for each MTU separately 

and for all MTUs simultaneously. 

5.1.3.1 Strong duality and shadow prices 

The subproblem is a linear program with convex structure, so: 

• It satisfies strong duality:  

o The primal objective (max welfare) equals the dual objective at optimum. 

• The dual variables (shadow prices):  

o Reflect the marginal value of capacity on each border and hour. 

o Are used to build Benders cuts for the master problem. 

The subproblem precisely answers: “Given this set of accepted blocks, how can 

we best clear single-hour bids and what is the value of remaining capacity?” 

The associated shadow prices then tell the master how “expensive” block 

capacity usage is, so it can adjust its block decisions intelligently. 

5.1.4 Benders Optimality Cut 

After solving the subproblem for a given pattern of block acceptances: 

• We know:  

o The actual welfare from single-hour bids, given these blocks. 

o The shadow prices for ATC constraints. 

From this, we construct a Benders cut: a linear inequality (Appendix A) that relates: 

• The block decisions (which blocks are accepted). 

• The maximum welfare that the subproblem can deliver (represented by θ). 

This cut says: 



 

 

 
 

“If you accept these blocks (and in general, blocks that use capacity in certain 

expensive hours), the best welfare you can get from single-hour bids is no 

more than a certain value.” 

Each cut provides a tighter upper bound on θ, helping the master problem approximate the true 

welfare impact of block decisions. 

The key economic signals come from shadow prices: 

• When capacity for a given hour and border is very valuable (high shadow price), any 

block that uses this capacity is “expensive” to the system. 

• The Benders cut reflects this by giving such blocks a more negative impact on θ 

whenever they consume capacity in those hours. 

Thus: 

• Blocks that consume capacity in peak-value hours get penalized more. 

• Blocks that mainly use low-value or uncongested hours are less penalized. 

Over successive iterations: 

• The master learns that some blocks are systematically detrimental to welfare (due to 

high shadow prices at the times they use capacity) and tends to reject them. 

• Other blocks that harmonize well with high-value single-hour bids, or that fill low-value 

capacity, are more likely to be accepted. 

θ shall be lower bounded either by 0 or by a certain value. 

5.1.5 Iterative Process and Convergence 

The Benders decomposition follows this loop: 

1. Solve initial master 

o Start with no Benders cuts. 

o Include feasibility cuts that enforce:  

▪ For each border and hour, the sum of (block quantity × acceptance 

binary) ≤ ATC. 

o θ is unconstrained above, so the master will initially tend to accept blocks that 

look valuable on their own (based on block price and quantity), since it 

“assumes” the single-hour welfare can still be high. 

o However, one can start from a neutral block acceptance which will provide the 

baseline welfare which is the maximum welfare one can get from the single-hour 



 

 

 
 

bids without any block bids. Moreover, its duals (shadow prices) provide 

meaningful sensitivities. When no blocks are accepted, the shadow prices reflect 

the “pure” congestion value per hour. So, if an hour is tight (high shadow price), 

then the next iteration’s cut will penalize accepting blocks that consume capacity 

there. Also, it’s a conservative initialization that will measure how much value 

single-hour bids produce, then progressively test block inclusion through cuts. 

o Obtain:  

▪ Candidate block acceptance pattern y (which blocks are tentatively 

accepted). 

▪ Current θ value (estimated welfare from single hour bids). 

Because of the feasibility cuts, any “y” chosen by the master already respects 

basic ATC limits across all block hours. This guarantees that the subproblem can 

find a feasible dispatch for single hour bids (possibly with zero accepted quantity 

if capacity is fully used by blocks). 

2. Solve subproblem 

o Fix y from the master.  

o Adjust ATC per hour and border based on accepted blocks (remaining capacity = 

ATC – block usage).  

o Solve the single-hour LP problem to optimality across all hours.  

o Obtain:  

▪ Actual welfare from single hour bids. 

▪ Dual variables (shadow prices) for ATC constraints. 

3. Compute Auction Price 

o The Auction price is computed by choosing the cheapest accepted bid (regular 

bid or block bid). 

o This unifies the definition of the auction price across the master problem and the 

subproblem, since we cannot rely on the duals of the subproblem anymore. 

4. Generate Cut 

o Use strong duality and shadow prices to derive a Benders optimality cut. 

o The cut limits θ as a function of block decisions and capacity usage. 

5. Add paradoxical block cuts 



 

 

 
 

o If, based on realized prices and the clearing result, a block is identified as 

paradoxically accepted (or fails a specific business rule):  

▪ Add a constraint forcing that block to be rejected in subsequent iterations 

(e.g., y_block = 0). 

6. Update Master and re-solve 

o Add the new cut to the master problem. 

o Any additional cuts from paradoxical block handling or other business rules. 

o Feasibility cuts on block quantities vs. ATC remain in place throughout the 

process. 

o Return to Step 1. 

o Re-solve the master to obtain a new set of block decisions and a refined θ. 

7. Repeat until: 

o For the chosen block pattern, the θ in the master equals the true welfare from the 

subproblem. 

o No new cuts further improve the solution. 

o At this point, we have convergence. 

5.1.6 Guaranteed maximum welfare 

Because each Benders cut is derived from exact dual information of a convex LP: 

• The master’s upper bound on welfare becomes progressively tighter. 

• The final solution is globally optimal:  

o There is no other combination of block acceptances and single-hour dispatch that 

could yield higher total welfare under the modeled constraints. 

In other words: 

The iterative process systematically eliminates overly optimistic views of 

single‑hour welfare for each block combination, until it finds the combination 

for which expectations and reality match. That combination is the 

welfare‑maximizing solution. 

5.1.7 Fairness and non-Discrimination 

5.1.7.1 Equal treatment in Welfare Objective 

Both single-hour and block bids are evaluated in the same welfare framework: 



 

 

 
 

• Each bid’s contribution is:  

o Quantity × price. 

• The optimization allocates capacity to the combination of bids that gives the highest total 

welfare. 

This ensures that: 

• There is no explicit preference for one bid type over the other in the objective. 

• Every euro of surplus is treated equally, regardless of its source. 

5.1.7.2 Shadow Prices and Non‑Discriminatory Capacity Valuation 

Shadow prices (dual variables) provide a uniform valuation of capacity: 

• All bids (block or single-hour) face the same shadow price for using capacity on a given 

border and hour. 

• If capacity is scarce and valuable for a given period, both block and single-hour bids are 

“charged” the same opportunity cost. 

Thus: 

• The optimization model does not discriminate between bid types in valuing capacity. 

• Differences in outcomes stem from the structural differences:  

o Single-hour bids are flexible and can be accepted or rejected hour by hour. 

o Block bids must be accepted or rejected in full, which can create paradoxical 

situations. 

5.1.8 Block vs Single‑Hour Bids: Are We Favouring One? 

5.1.8.1 Methodological neutrality 

From a model design perspective: 

• The welfare objective treats all bids symmetrically. 

• Capacity constraints, shadow prices, and the rules around AP apply consistently. 

However, the structural properties of the bids imply differences: 

• Single-hour bids: 

o Have a simple and local rule relative to AP. 

o Each hour is independent; a bid can be accepted in one hour and rejected in 

another, even if from the same participant. 



 

 

 
 

• Block bids: 

o Must be “all-or-nothing” across multiple hours. 

o May be rejected even if their price looks attractive in most individual hours 

(paradoxically rejected). 

o May be accepted even if some hours in the block are out of the money, as long 

as the overall impact is positive. 

5.1.8.2 Perception of favouritism 

In practice, this can lead to perceptions such as: 

• “Block bids are harder to get accepted, even with a competitive price.” 

• “Single-hour bids always follow the simple AP rule, but blocks don’t.” 

These differences are not caused by Benders decomposition itself, but by: 

• The all-or-nothing nature of blocks. 

• The requirement to maximize total welfare over multiple hours. 

Therefore: 

The algorithm does not intentionally favour one type of bid over another. It 

systematically chooses the combination of single‑hour and block bids that 

maximizes total welfare, but block bids are more constrained by design and 

hence more prone to paradoxical acceptance/rejection. 

5.1.9 Handling the paradoxically accepted/rejected block bids 

5.1.9.1 Paradoxically rejected blocks 

A paradoxically rejected block is: 

• A block that appears to be “in the money” based on observed auction prices but is 

rejected. 

• This can occur because:  

o Accepting it would crowd out higher-value single-hour bids or other blocks in one 

or more hours. 

o The welfare gain in some hours is outweighed by welfare losses in others. 



 

 

 
 

Paradoxical rejections are an inherent feature of block products under welfare maximization with 

capacity constraints. 

5.1.9.2 Paradoxically accepted blocks 

A paradoxically accepted block would be: 

• A block that, under the applied market prices, would not be profitable for the participant, 

yet is accepted. 

• To avoid forcing participants into loss-making positions, business rule 3 (in Chapter 3.2) 

is enforced. 

5.1.9.3 How does Benders Decomposition handle the paradoxical blocks 

Benders decomposition alone does not resolve issues of paradoxical acceptance or rejection. It: 

• Efficiently finds the welfare-maximizing solution under the given constraints. 

• But does not, by itself, enforce revenue adequacy or “no loss” conditions for individual 

blocks. 

Only paradoxically accepted blocks are going to be ruled out in the Benders Decomposition 

approach through business rule 3. To address these blocks an integrated constraints 

approach is followed. It consists of adding explicit constraints to the optimization that:  

o Prevent paradoxical acceptances by bounding block revenue relative to prices. 

o If a block is found paradoxical in an iteration, add a cut stating that this block 

must not be accepted. 

5.1.10 Role of the business rules in Benders Decomposition 

The business rules described in this report are not a technical necessity of Benders 

decomposition; they are a deliberate market design choice. Their purpose is to shape the 

welfare-maximizing outcome so that it aligns with JAO’s market principles and participants’ 

expectations. 

In a purely mathematical sense, Benders decomposition would simply: 

• Decide block acceptances in the master problem, 

• Maximize welfare from single-hour bids in the subproblem, and 

• Iterate until overall welfare is maximized, without regard to how individual bids fare under 

the resulting prices. 

What distinguishes our implementation is that we explicitly embed business rules into the 

Benders loop: 



 

 

 
 

• Single-hour rules (“bids above AP fully accepted, bids below AP fully rejected”) are 

enforced by rejecting the block-bid pattern that led to the violation of said rules. This is 

done by implementing a no-good cut such that: 

 

∑ (1 − 𝑦𝑏)

𝑏 𝑖𝑛 𝐵∗

 ≥ 1 

Where B* is the pattern of block bids that is examined at the iteration where either of the 

SH business rule is being violated.  

This no-good cut implies that: “At least one block in the violating pattern must change 

state”. 

 

• Block rule 3 (“block price must not be lower than the AP over its hours”) is checked at 

each iteration; any pattern that leads to a paradoxically accepted block is ruled out by 

adding a cut (e.g. forcing (y_b = 0) for that block). 

• Additional business-oriented criteria, such as tie-breaking rules between 

welfare-equivalent block patterns, are implemented at the master level (e.g. preferring 

solutions with more single-hour welfare or fewer accepted blocks). 

Benders decomposition is the enabling technical framework: it keeps the problem solvable at 

scale and exposes the right dual information (shadow prices) to build welfare-based cuts. The 

business rules are what give this framework its market shape. They allow to “manipulate” 

the optimization in a controlled and transparent way: 

• Maximize total welfare under physical and economic constraints, and at the same time 

• Enforce market rules such as no-loss conditions for blocks, priority patterns for 

single-hour bids, and consistent pricing logic. 

 

5.1.11 Tie-breaking rules 

In some configurations, the welfare-maximizing problem admits multiple block-acceptance 

patterns with the same total welfare. This is already visible in simple one-block examples: 

• Example 1: 

o Rejecting the block (y = 0) and fully clearing the single-hour bids yields total 

welfare = 400. 

o Accepting the block (y = 1) and crowding out the single-hour bids also yields total 

welfare = 400. 

• Example 4: 



 

 

 
 

o Rejecting the block (y = 0) and accepting the single-hour bids in the first two 

MTUs yields total welfare = 400. 

o Accepting the block (y = 1) and crowding out the single-hour bids yields the same 

400. 

From a pure welfare perspective, both patterns are equally optimal. However, in an operational 

implementation this ambiguity must be resolved in a systematic and transparent way, so that 

the algorithm always produces a unique outcome. 

We therefore introduce explicit tie-breaking rules at the master-problem level, to select one 

block-acceptance pattern among welfare-equivalent alternatives. 

5.1.11.1 Design choice 

Different tie-breaking philosophies are possible. They must be defined by the TSOs. Two 

examples can be found below: 

1. Preference for single-hour bids (SH-first): 

Among all welfare-maximizing solutions, prefer those that keep as much welfare as 

possible in single-hour bids. Intuitively, blocks are used only when they clearly bring 

additional welfare beyond what the single-hour bids can provide. 

2. Preference for fewer accepted blocks (minimal block usage): 

Among all welfare-maximizing solutions, prefer solutions with the smallest number of 

accepted blocks. This keeps the outcome closer to the legacy single-hour world and 

reduces the number of all-or-nothing commitments. 

Both philosophies lead to the same choice in Examples 1 and 4 (rejecting the block), but they 

are conceptually distinct and could differ in more complex situations. 

5.1.11.2 Implementation 

We implement tie‑breaking as a lexicographic optimization on top of the Benders master 

problem. The procedure is as follows: 

1. The standard Benders decomposition is executed until convergence, yielding the 

maximum achievable total welfare W*. 

2. All Benders cuts and feasibility constraints identified during the convergence process are 

retained. 

3. The master problem is re-solved with:  

o An additional constraint fixing total welfare at its optimum: W* 

∑ 𝑊𝑏𝑦𝑏

𝑏∈𝐵

+ 𝜃 ≥  𝑊∗ 



 

 

 
 

o A new objective function that minimizes the number of accepted block bids: 

min (∑ 𝑦𝑏

𝑏

) 

Because this second step operates on the already converged master problem and does not 

alter the subproblem structure, no additional subproblem solves are required. 

Among all welfare-maximizing block patterns, we pick the one with the smallest number of 

accepted blocks. 

In case more than 1 solution has the same number of accepted block bids, the solution with the 

block bid that has the lowed ID number is chosen. 

6 Examples 

This section contains examples of corner cases to see how Benders Decomposition will tackle 

them: 

6.1 Example 1 

Time ATC MP1 (single-hour bid) MP2 (block bid) 

10:00–10:15 10 10 MW @ 15 €/MWh Block: 10 MW @ 10 €/MWh 

10:15–10:30 10 10 MW @ 10 €/MWh  

10:30–10:45 10 10 MW @ 10 €/MWh  

10:45–11:00 10 10 MW @ 5 €/MWh  

 

The master problem in Benders Decomposition is defined as follows: 

𝑀𝑎𝑠𝑡𝑒𝑟 = max(400 ⋅ 𝑦 + 𝜃) 

6.1.1 Iteration 1: baseline scenario 

If we decide to initialize the Benders decomposition to y=0, the block bid is initially rejected. The 

ATC is fully available in each MTU for single-hour bids. 

Subproblem with y=0: 

• t=1: accept 10 @15 → welfare 150, ATC used, λ₁ = 15. 

• t=2: accept 10 @10 → welfare 100, ATC used, λ₂ = 10. 



 

 

 
 

• t=3: accept 10 @10 → welfare 100, λ₃ = 10. 

• t=4: accept 10 @5 → welfare 50, λ₄ = 5. 

So: 

• V(0) = 150 + 100 + 100 + 50 = 400. 

• λ = (15, 10, 10, 5). 

The auction price is equal to the cheapest accepted bid so AP = (15, 10, 10, 5). 

Business rules check: 

All the accepted SH bids are higher than or equal to the auction price, and the price of the 

rejected block bid is strictly lower than the auction price on the first time interval so the solution 

is valid. 

Optimality cut from iteration 1: 

𝜃 ≤  400 −  400 𝑦 

Master moves to iteration 2 and accepts the block bid. 

6.1.2 Iteration 2: block bid accepted (y = 1) 

The master problem becomes bounded by the optimality cut and the feasibility cut: 

𝑀𝑎𝑠𝑡𝑒𝑟 = max(400 ⋅ 𝑦 + 𝜃) 

Constraints: 

1. 𝜃 ≤  400 −  400 𝑦 

2. 10𝑦 ≤  10 

3. 𝑦 ∈ {0; 1} 

The block uses 10 MW in all 4 intervals. With the ATC being equal to 10 MW, so: 

• Subproblem with y = 1: 

o The remaining capacity for single-hour bids = 0 MW in all 4 MTUs  

o No capacity left, so no MP1 bids can be accepted. 

o Single-hour welfare: V(1) = 0. 

o λ = (0, 0, 0, 0). 

The auction price is equal to the cheapest accepted bid so AP = (10, 10 ,10, 10). 

Business rules check: 



 

 

 
 

The block bid price is equal to the auction price, so Business Rule 3 is validated.  

However, the price of the rejected SH bid is higher than the auction price on the first time-

interval, so Business Rule 1 is violated, which means that the solution is not valid.  

Therefore:  

We force-reject the block bid pattern by implementing a no-good cut: 

∑ (1 − 𝑦𝑏)

𝑏 𝑖𝑛 𝐵∗

 ≥ 1 

Where B* is the pattern of block bids that is examined at this iteration.  

In the context of this example, only one block bid exists therefore the no-good cut implies that 

y_b should not be equal to 1 and the block bid should be rejected.  

Optimality cut from iteration 2: 

𝜃 ≤  0 −  400 (𝑦 − 1) 

𝜃 ≤  400 −  400 𝑦 

We substitute the cut: 

• For y=0: θ ≤ 400 → best θ is 400 → objective = 0·400 + 400 = 400. 

Converged solution: y=0, total welfare 400. 

6.1.3 Auction price computation 

 

MTU Shadow price AP (€/MWh) 

10:00–10:15 15 15 

10:15–10:30 10 10 

10:30–10:45 10 10 

10:45–11:00 5 5 

 

6.1.4 Final auction results 

 



 

 

 
 

Time period ATC (MW) 

MP1 

(single-hour 

bid) selected 

quantity (MW) 

MP2 (block 

bid) selected 

quantity (MW) 

Auction Price 

(€/MWh) 

10:00–10:15 10 10  0 15 

10:15–10:30 10 10 0 10 

10:30–10:45 10 10 0 10 

10:45–11:00 10 10 0 5 

 

6.1.5 Results interpretation 

Welfare is identical in both cases, so the Benders master problem has at least two optimal 

solutions (y = 0 or y = 1) from a pure welfare perspective.  

Detailed Benders interpretation 

• Subproblem with y=1 gives actual welfare from single-hour bids = 0 and duals on ATC 

indicate that marginal value of capacity would be around 15, 10, 10, 5 €/MWh in the 

corresponding hours if capacity were available. 

• Benders cut basically says: 

“If you allocate all capacity to this block, the best welfare from single-hour bids is 0 and 

the opportunity cost is exactly equal to the value you would have obtained with 

single-hour bids.” 

• Therefore, total welfare is 400 either way. 

Business Rule Validation 

• For y=0 (block rejected): 

o The block passes Business Rule 3 but would be rejected based on tie-breaking 

preference 

• For y=1 (block accepted): 

o Business Rule 1 Violation: The single-hour bid in MTU 1 has price 15 €/MWh > 

AP (10 €/MWh) 



 

 

 
 

o According to Rule 1: "All single-hour bids with price higher than AP are fully 

accepted" 

o This bid must be accepted, but there is no capacity available 

o Therefore, solution y=1 is invalid. 

Final Decision 

• Without business rules, the implementation would pick one solution depending on the 

tie-breaking algorithm put in place (likely y=0 based on preference for fewer accepted 

blocks). 

• However, with business rule enforcement: 

o y=1 is excluded due to Business Rule 1 violation 

o A constraint forcing y=0 is added to the master problem 

Key Takeaway 

This example demonstrates that welfare maximization alone is insufficient. Even though both 

solutions yield welfare = 400, accepting the block would violate the fundamental market rule that 

bids priced above the auction price must be accepted. The business rules transform what would 

be an arbitrary tie-breaking decision into a definitive outcome that preserves market consistency 

6.2 Example 2 

Time ATC MP1 MP2 (block) 

10:00–10:15 10 10 MW @ 14 €/MWh Block: 10 MW @ 10 €/MWh 

10:15–10:30 10 10 MW @ 10 €/MWh  

10:30–10:45 10 10 MW @ 10 €/MWh  

10:45–11:00 10 10 MW @ 5 €/MWh  

 

The master problem in Benders Decomposition is defined as follows: 

𝑀𝑎𝑠𝑡𝑒𝑟 = max(400 ⋅ 𝑦 + 𝜃) 

Constraints: 

- Feasibility cut (block_quantity <= ATC): 10𝑦 ≤  10 



 

 

 
 

- 𝑦 ∈ {0; 1} 

6.2.1 Iteration 1: baseline scenario 

The block bid is initially rejected. The ATC is fully available in each MTU for single-hour bids. 

Subproblem with y=0: 

• t=1: accept 10 @15 → welfare 150, ATC used, λ₁ = 14. 

• t=2: accept 10 @10 → welfare 100, ATC used, λ₂ = 10. 

• t=3: accept 10 @10 → welfare 100, λ₃ = 10. 

• t=4: accept 10 @5 → welfare 50, λ₄ = 5. 

So: 

• V(0) = 140 + 100 + 100 + 50 = 390. 

• λ = (14, 10, 10, 5). 

The auction price is equal to the cheapest accepted bid so AP = (14, 10, 10, 5). 

Business rules check: 

All the accepted SH bids are higher than or equal to the auction price, so the solution is valid. 

Optimality cut from iteration 1: 

𝜃 ≤  390 −  390 𝑦 

Master moves to iteration 2 and accepts the block bid. 

6.2.2 Iteration 2: block accepted (y = 1) 

The master problem becomes bounded by the optimality cut and the feasibility cut: 

𝑀𝑎𝑠𝑡𝑒𝑟 = max(400 ⋅ 𝑦 + 𝜃) 

Constraints: 

1. 𝜃 ≤  390 −  390 𝑦 

2. 10𝑦 ≤  10 

3. 𝑦 ∈ {0; 1} 

The block uses 10 MW in all 4 intervals. With the ATC being equal to 10 MW, so: 

• Subproblem with y = 1: 

o The remaining capacity for single-hour bids = 0 MW in all 4 MTUs  



 

 

 
 

o No capacity left, so no MP1 bids can be accepted. 

o Single-hour welfare: V(1) = 0. 

o λ = (0, 0, 0, 0). 

The auction price is equal to the cheapest accepted bid so AP = (10, 10 ,10, 10). 

Business rules check: 

The block bid price is equal to the auction price, so business rule 3 is respected.  

However, the price of the rejected SH bid is higher than the auction price on the first time-

interval, so Business Rule 1 is violated, which means that the solution is not valid.  

Therefore:  

We force-reject the block bid pattern by implementing a no-good cut: 

∑ (1 − 𝑦𝑏)

𝑏 𝑖𝑛 𝐵∗

 ≥ 1 

Where B* is the pattern of block bids that is examined at this iteration.  

In the context of this example, only one block bid exists therefore the no-good cut implies that 

y_b should not be equal to 1 and the block bid should be rejected.  

Optimality cut from iteration 2: 

𝜃 ≤  0 −  390 (𝑦 − 1) 

𝜃 ≤  390 −  390 𝑦 

Objective: 

• y=0 → 400·0 + θ ≤ 390 = 390. 

• y=1 → 400·1 + θ ≤ 400 + 0 = 400. 

Therefore, due to the business rules being violated the master chooses to reject the block bid.  

Benders converges to: 

y* = 0 (block rejected), total welfare = 390 (even if higher welfare is reached when the block bid 

is accepted.  

6.2.3 Auction price computation 

The auction price is equal to the cheapest accepted bid which in this case is the SH bid for each 

MTU. 



 

 

 
 

MTU Shadow price (€/MWh) AP (€/MWh) 

10:00–10:15 14 14 

10:15–10:30 10 10 

10:30–10:45 10 10 

10:45–11:00 5 5 

 

6.2.4 Final auction results 

 

Time period ATC (MW) 

MP1 

(single-hour 

bid) selected 

quantity (MW) 

MP2 (block 

bid) selected 

quantity (MW) 

Auction Price 

(€/MWh) 

10:00–10:15 10 10  0 14 

10:15–10:30 10 10 0 10 

10:30–10:45 10 10 0 10 

10:45–11:00 10 10 0 5 

 

6.2.5 Results interpretation 

Welfare is higher when the block is accepted:  

• Welfare (y=1) = 400 

• Welfare (y=0) = 390  

→ block increases welfare by 10 compared to only single-hour bids. 

From the Benders decomposition angle: 

• First iteration: Subproblem with y=0 yields welfare 390; dual prices show that capacity is 

especially valuable in the first interval (14 €/MWh). 



 

 

 
 

• Evaluating y=1, subproblem gives 0 welfare from single-hour bids: total = 400 via block. 

• Master receives a cut indicating that using capacity for the block is beneficial — θ under 

“block accepted” can be higher in combination with the block’s own contribution. 

Business Rule Validation 

• For y=0 (block rejected): 

o All business rules are validated. 

• For y=1 (block accepted): 

o Business Rule 1 Violation: The single-hour bid in MTU 1 has price 14 €/MWh > 

AP (10 €/MWh) 

o According to Rule 1: "All single-hour bids with price higher than AP are fully 

accepted" 

o This bid must be accepted, but there is no capacity available 

o Therefore, solution y=1 is invalid. 

Final Decision 

• Without business rules, the implementation would pick the solution that has the higher 

welfare (y=1). 

• However, with business rule enforcement: 

o y=1 is excluded due to Business Rule 1 violation 

o A constraint forcing y=0 is added to the master problem 

 

6.3 Example 3 

Time ATC MP1 (single-hour) MP2 (block) 

10:00–10:15 10 10 MW @ 15 €/MWh Block: 10 MW @ 10 €/MWh 

10:15–10:30 10 — (no bid)  

10:30–10:45 10 — (no bid)  

10:45–11:00 10 — (no bid)  



 

 

 
 

 

The master problem in Benders Decomposition is defined as follows: 

𝑀𝑎𝑠𝑡𝑒𝑟 = max(400 ⋅ 𝑦 + 𝜃) 

Constraints: 

- Feasibility cut (block_quantity <= ATC): 10𝑦 ≤  10 

- 𝑦 ∈ {0; 1} 

 

 

6.3.1 Iteration 1: baseline scenario 

The block bid is initially rejected. The ATC is fully available in each MTU for single-hour bids. 

Subproblem with y=0: 

• t=1: accept 10 @15 → welfare 150, ATC used, λ₁ = 15. 

• t=2: → λ₂ = 0. 

• t=3: → λ₃ = 0. 

• t=4: → λ₄ = 0. 

So: 

• V(0) = 150. 

• λ = (15, 0, 0, 0). 

The auction price is equal to the cheapest accepted bid so AP = 15 on the first time interval. 

Business rules check: 

The accepted SH bid is equal to the auction price, so the solution is valid. 

Optimality cut from iteration 1: 

𝜃 ≤  150 −  150 𝑦 

Master moves to iteration 2 and accepts the block bid. 

6.3.2 Iteration 2: block accepted (y = 1) 

The master problem becomes bounded by the optimality cut and the feasibility cut: 

𝑀𝑎𝑠𝑡𝑒𝑟 = max(400 ⋅ 𝑦 + 𝜃) 



 

 

 
 

Constraints: 

1. 𝜃 ≤  150 −  150 𝑦 

2. 10𝑦 ≤  10 

3. 𝑦 ∈ {0; 1} 

The block uses 10 MW in all 4 intervals. With the ATC being equal to 10 MW, so: 

• Subproblem with y = 1: 

o The remaining capacity for single-hour bids = 0 MW in all 4 MTUs  

o No capacity left, so no MP1 bids can be accepted. 

o Single-hour welfare: V(1) = 0. 

o λ = (0, 0, 0, 0). 

The auction price is equal to the cheapest accepted bid so AP = (10, 10 ,10, 10). 

Business rules check: 

The block bid price is equal to the auction price, so business rule 3 is respected.  

However, the price of the rejected SH bid is higher than the auction price on the first time-

interval, so Business Rule 1 is violated, which means that the solution is not valid.  

Therefore:  

We force-reject the block bid pattern by implementing a no-good cut: 

∑ (1 − 𝑦𝑏)

𝑏 𝑖𝑛 𝐵∗

 ≥ 1 

Where B* is the pattern of block bids that is examined at this iteration.  

In the context of this example, only one block bid exists therefore the no-good cut implies that 

y_b should not be equal to 1 and the block bid should be rejected.  

Optimality cut from iteration 2: 

𝜃 ≤  0 −  150 (𝑦 − 1) 

𝜃 ≤  150 −  150 𝑦 

We substitute the cut: 

• For y=0: θ ≤ 150 → best θ is 150 → objective = 0·150 + 150 = 150. 

• For y=1: θ ≤ 150(1−1) = 0 → best θ is 0 → objective = 400·1 + 0 = 400. 



 

 

 
 

Therefore, due to the business rules being violated the master chooses to reject the block bid.  

Benders converges to: 

y* = 0 (block rejected), total welfare = 150 (even if higher welfare is reached when the block bid 
is accepted.  

6.3.3 Auction price computation 

MTU Shadow price (€/MWh) AP (€/MWh) 

10:00–10:15 15 15 

10:15–10:30 0 0 

10:30–10:45 0 0 

10:45–11:00 0 0 

 

6.3.4 Final auction results 

 

Time period ATC (MW) 

MP1 

(single-hour 

bid) selected 

quantity (MW) 

MP2 (block 

bid) selected 

quantity (MW) 

Auction Price 

(€/MWh) 

10:00–10:15 10 10 0 15 

10:15–10:30 10 - 0 0 

10:30–10:45 10 - 0 0 

10:45–11:00 10 - 0 0 

 

 

6.3.5 Results interpretation 

Welfare is higher when the block is accepted:  



 

 

 
 

• Welfare (y=1) = 400 

• Welfare (y=0) = 150  

→ block massively increases welfare compared to only single-hour bids. 

From a Benders Decomposition perspective: 

• Master tries y=0 first. 

• Subproblem yields θ=150, with strong dual in first interval and slack in others. 

• Master then tries y=1:  

o Subproblem welfare from single-hour bids = 0. 

o But adding block’s own welfare (400) yields total of 400. 

• The Benders cut makes it clear that capacity in the three intervals with no MP1 bids is 

essentially free capacity; using it for a block adds pure welfare with no opportunity cost. 

• The regular bid in the first MTU is crowded out by the block because the block’s 

additional welfare in the other 3 MTUs more than compensates the forgone 150. 

Business Rule Validation 

• For y=0 (block rejected): 

o All business rules are validated. 

• For y=1 (block accepted): 

o Business Rule 1 Violation: The single-hour bid in MTU 1 has price 15 €/MWh > 

AP (10 €/MWh) 

o According to Rule 1: "All single-hour bids with price higher than AP are fully 

accepted" 

o This bid must be accepted, but there is no capacity available 

o Therefore, solution y=1 is invalid. 

Final Decision 

• Without business rules, the implementation would pick the solution that has the higher 

welfare (y=1). 

• However, with business rule enforcement: 

o y=1 is excluded due to Business Rule 1 violation 

o A constraint forcing y=0 is added to the master problem. 



 

 

 
 

6.4 Example 4 

Time ATC MP1 (single-hour) MP2 (block) 

10:00–10:15 10 10 MW @ 20 €/MWh Block: 10 MW @ 10 €/MWh 

10:15–10:30 10 10 MW @ 20 €/MWh  

10:30–10:45 10 —  

10:45–11:00 10 —  

 

The master problem in Benders Decomposition is defined as follows: 

𝑀𝑎𝑠𝑡𝑒𝑟 = max(400 ⋅ 𝑦 + 𝜃) 

Constraints: 

- Feasibility cut (block_quantity <= ATC): 10𝑦 ≤  10 

- 𝑦 ∈ {0; 1} 

6.4.1 Iteration 1: baseline scenario 

The block bid is initially rejected. The ATC is fully available in each MTU for single-hour bids. 

Subproblem with y=0: 

• t=1: accept 10 @20 → welfare 200, ATC used, λ₁ = 20. 

• t=2: accept 10 @20 → welfare 200, ATC used, λ₂ = 20. 

• t=3: → λ₃ = 0. 

• t=4: → λ₄ = 0. 

So: 

• V(0) = 400. 

• λ = (20, 20, 0, 0). 

The auction price is equal to the cheapest accepted bid so AP = 20 on the two first time 

intervals. 

Business rules check: 



 

 

 
 

All the accepted SH bids are higher than the auction price, so the solution is valid. 

Optimality cut from iteration 1: 

𝜃 ≤  400 −  400 𝑦 

Master moves to iteration 2 and accepts the block bid. 

6.4.2 Iteration 2: block accepted (y = 1) 

The master problem becomes bounded by the optimality cut and the feasibility cut: 

𝑀𝑎𝑠𝑡𝑒𝑟 = max(400 ⋅ 𝑦 + 𝜃) 

Constraints: 

1. 𝜃 ≤  400 −  400 𝑦 

2. 10𝑦 ≤  10 

3. 𝑦 ∈ {0; 1} 

The block uses 10 MW in all 4 intervals. With the ATC being equal to 10 MW, so: 

• Subproblem with y = 1: 

o The remaining capacity for single-hour bids = 0 MW in all 4 MTUs  

o No capacity left, so no MP1 bids can be accepted. 

o Single-hour welfare: V(1) = 0. 

o λ = (0, 0, 0, 0). 

The auction price is equal to the cheapest accepted bid so AP =10. 

Business rules check: 

The block bid price is equal to the auction price, so business rule 3 is respected.  

However, the price of the rejected SH bid is higher than the auction price on the first time-

interval, so Business Rule 1 is violated, which means that the solution is not valid.  

Therefore:  

We force-reject the block bid pattern by implementing a no-good cut: 

∑ (1 − 𝑦𝑏)

𝑏 𝑖𝑛 𝐵∗

 ≥ 1 

Where B* is the pattern of block bids that is examined at this iteration.  



 

 

 
 

In the context of this example, only one block bid exists therefore the no-good cut implies that 

y_b should not be equal to 1 and the block bid should be rejected.  

Optimality cut from iteration 2: 

𝜃 ≤  0 −  400 (𝑦 − 1) 

𝜃 ≤  400 −  400 𝑦 

We substitute the cut: 

• For y=0: θ ≤ 400 → best θ is 400 → objective = 0·400 + 400 = 400. 

• For y=1: θ ≤ 150(1−1) = 0 → best θ is 0 → objective = 400·1 + 0 = 400. 

Therefore, due to the business rules being violated the master chooses to reject the block bid.  

Benders converges to: 

y* = 0 (block rejected), total welfare = 400  

6.4.3 Auction price computation 

 

MTU Shadow price (€/MWh) AP (€/MWh) 

10:00–10:15 20 20 

10:15–10:30 20 20 

10:30–10:45 0 0 

10:45–11:00 0 0 

 

6.4.4 Final auction results 

 



 

 

 
 

Time period ATC (MW) 

MP1 

(single-hour 

bid) selected 

quantity (MW) 

MP2 (block 

bid) selected 

quantity (MW) 

Auction Price 

(€/MWh) 

10:00–10:15 10 10  0 20 

10:15–10:30 10 10 0 20 

10:30–10:45 10 - 0 0 

10:45–11:00 10 - 0 0 

 

6.4.5 Results interpretation 

Welfare is identical in both cases, so the Benders master problem has at least two optimal 

solutions (y = 0 or y = 1) from a pure welfare perspective.  

Detailed Benders interpretation 

• Subproblem with y=1 gives actual welfare from single-hour bids = 0 and duals on ATC 

indicate that marginal value of capacity would be around 15, 10, 10, 5 €/MWh in the 

corresponding hours if capacity were available. 

• Benders cut basically says: 

“If you allocate all capacity to this block, the best welfare from single-hour bids is 0 and 

the opportunity cost is exactly equal to the value you would have obtained with 

single-hour bids.” 

Business Rule Validation 

• For y=0 (block rejected): 

o All business rules are validated. 

• For y=1 (block accepted): 

o Business Rule 1 Violation: The single-hour bid in MTU 1 has price 20 €/MWh > 

AP (10 €/MWh) 

o According to Rule 1: "All single-hour bids with price higher than AP are fully 

accepted" 

o This bid must be accepted, but there is no capacity available 



 

 

 
 

o Therefore, solution y=1 is invalid. 

Final Decision 

• Without business rules, the implementation would pick the solution that has the higher 

welfare (y=1). 

• However, with business rule enforcement: 

o y=1 is excluded due to Business Rule 1 violation 

o A constraint forcing y=0 is added to the master problem 

 

6.5 Example 5 

Time ATC MP1 (single-hour) MP2 (block) 

10:00–10:15 10 2 MW @ 20 €/MWh Block: 10 MW @ 10 €/MWh 

10:15–10:30 10 2 MW @ 20 €/MWh  

10:30–10:45 10 —  

10:45–11:00 10 —  

 

The master problem in Benders Decomposition is defined as follows: 

𝑀𝑎𝑠𝑡𝑒𝑟 = max(400 ⋅ 𝑦 + 𝜃) 

Constraints: 

- Feasibility cut (block_quantity <= ATC): 10𝑦 ≤  10 

- 𝑦 ∈ {0; 1} 

6.5.1 Iteration 1: baseline scenario 

The block bid is initially rejected. The ATC is fully available in each MTU for single-hour bids. 

Subproblem with y=0: 

• t=1: accept 2 @20 → welfare 40, ATC used, λ₁ = 20. 

• t=2: accept 2 @20 → welfare 40, ATC used, λ₂ = 20. 



 

 

 
 

• t=3: → λ₃ = 0. 

• t=4: → λ₄ = 0. 

So: 

• V(0) = 80. 

• λ = (20, 20, 0, 0). 

The auction price is equal to the cheapest accepted bid so AP = 20 on the two first time 

intervals. 

Business rules check: 

All the accepted SH bids are higher than the auction price, so the solution is valid. 

Optimality cut from iteration 1: 

𝜃 ≤  80 −  400 𝑦 

Master moves to iteration 2 and accepts the block bid. 

6.5.2 Iteration 2: block accepted (y = 1) 

The master problem becomes bounded by the optimality cut and the feasibility cut: 

𝑀𝑎𝑠𝑡𝑒𝑟 = max(400 ⋅ 𝑦 + 𝜃) 

Constraints: 

1. 0 ≤ 𝜃 ≤  80 −  400 𝑦 

2. 10𝑦 ≤  10 

3. 𝑦 ∈ {0; 1} 

The block uses 10 MW in all 4 intervals. With the ATC being equal to 10 MW, so: 

• Subproblem with y = 1: 

o The remaining capacity for single-hour bids = 0 MW in all 4 MTUs  

o No capacity left, so no MP1 bids can be accepted. 

o Single-hour welfare: V(1) = 0. 

o λ = (0, 0, 0, 0). 

The auction price is equal to the cheapest accepted bid so AP = (10, 10 , 10, 10). 

Optimality cut from iteration 2: 



 

 

 
 

𝜃 ≤  400 −  400 𝑦 

𝜃 ≤  80 −  400 𝑦 (optimality cut generated in iteration 1) 

We substitute the cut: 

• For y=0: θ ≤ min(400; 80) → best θ is 80 → objective = 0·400 + 80 = 80. 

• For y=1: θ≤ min(0; -320)= -320 however theta should be non-negative so this solution 

cannot be accepted. 

Benders cannot select y*=1 because theta is becoming negative so the block is rejected. 

6.5.3 Auction price computation 

MTU Shadow price (€/MWh) AP (€/MWh) 

10:00–10:15 20 20 

10:15–10:30 20 20 

10:30–10:45 0 0 

10:45–11:00 0 0 

 

6.5.4 Final auction results 

 

Time period ATC (MW) 

MP1 

(single-hour 

bid) selected 

quantity (MW) 

MP2 (block 

bid) selected 

quantity (MW) 

Auction Price 

(€/MWh) 

10:00–10:15 10 2 0 20 

10:15–10:30 10 2 0 20 

10:30–10:45 10 - 0 0 

10:45–11:00 10 - 0 0 



 

 

 
 

 

 

6.6 Example 6 

Time ATC MP1 MP2 MP3 

10:00–

10:15 
25 

10 MW @ 20 

€/MWh 

Block 10 MW @ 10 

€/MWh 

Block 10 MW @ 10 

€/MWh 

10:15–

10:30 
25 

10 MW @ 20 

€/MWh 
  

10:30–

10:45 
25 —   

10:45–

11:00 
25 —   

 

The master problem in Benders Decomposition is defined as follows: 

𝑀𝑎𝑠𝑡𝑒𝑟 = max(400 ⋅ 𝑦2 + 400 ⋅ 𝑦3 + 𝜃) 

Constraints: 

- Feasibility cut (block_quantity <= ATC): 10𝑦2 + 10𝑦3 ≤  25 

- 𝑦2, 𝑦3 ∈ {0; 1} 

Feasibility (capacity):  

10y₂ + 10y₃ ≤ 25 in each MTU; so the constraint in master is 10y₂+10y₃≤25 (MTUs 3–4) and 

10y₂+10y₃ +10 (MP1) ≤25 in MTUs 1–2, but MP1 is not in the master, so the master only 

imposes: 

• 10y₂ + 10y₃ ≤ 25 (blocks alone not exceeding ATC). 

Hence (y₂,y₃)=(1,1) is feasible in master; the capacity conflict with MP1 is discovered via duals 

in the subproblem. 

6.6.1 Iteration 1: baseline scenario 

The block bids are initially rejected. The ATC is fully available in each MTU for single-hour bids. 



 

 

 
 

Subproblem with y_2=y_3=0: 

• t=1: accept 10 @20 → welfare 200, ATC not fully used (capacity slack), λ₁ = 0. 

• t=2: accept 10 @20 → welfare 200, ATC not fully used (capacity slack), λ₂ = 0. 

• t=3: → λ₃ = 0. 

• t=4: → λ₄ = 0. 

So: 

• V(0) = 400. 

• λ = (0, 0, 0, 0). 

The auction price is equal to the cheapest accepted bid so AP = 20 on the two first time 

intervals. 

Optimality cut from iteration 1: 

𝜃 ≤  400 

The first cut is simply: θ ≤ 400 (no dependence on y₂ and y₃). 

Master moves to iteration 2. 

6.6.2 Iteration 2: blocks accepted (1, 1) 

The master problem becomes bounded by the optimality cut and the feasibility cut: 

𝑀𝑎𝑠𝑡𝑒𝑟 = max(400 ⋅ 𝑦2 + 400 ⋅ 𝑦3 + 𝜃) 

Constraints: 

1. 0 ≤ 𝜃 ≤  400 

2. 10𝑦2 + 10𝑦3 ≤  25 

3. 𝑦 ∈ {0; 1} 

To maximize, master sets θ=400 and y₂=y₃=1, because there’s no penalty yet. Objective: 

400·1 + 400·1 + 400 = 1,200. 

Therefore, the master proposes (1,1). 

Subproblem with y₂=y₃=1 and rem. ATC=5: 

• t=1: accept 5 @20 → welfare 100, ATC used, λ₁ = 20. 

• t=2: accept 5 @20 → welfare 100, ATC used, λ₂ = 20. 



 

 

 
 

• t=3: → λ₃ = 0. 

• t=4: → λ₄ = 0. 

So: 

• V(1,1) = 200. 

• λ = (20, 20, 0, 0). 

 

Optimality cut from iteration 2: 

𝜃 ≤  200 − 400(𝑦2 − 1) − 400(𝑦3 − 1) 

𝜃 ≤  1000 −  400(𝑦2 +  𝑦3)  

Now the master is constrained by: 

• θ ≤ 400. 

• θ ≤ 1000 − 400(y₂ + y₃). 

(0,0): 

o θ ≤400 and θ ≤1000−0=1000 → θ≤400 

o Obj = 0 + θ ≤ 400 ⇒ best=400. 

(1,0) or (0,1): say (1,0): 

o θ ≤400 and θ ≤600 ⇒ θ≤400 

o Obj=400·1 +400·0 + θ ≤400 +400 =800 ⇒ best=800. 

(1,1): 

o θ ≤400 and θ ≤200 ⇒ θ≤200 

o Obj=400·1+400·1+θ ≤800+200=1000. 

Master still prefers (1,1) with θ=200 ⇒ objective 1,000 

Benders selects y*=(1,1) (blocks accepted), θ*=200, total welfare=400 + 400 + 200 = 1000 

6.6.3 Applying business rules 

If business rules 1, 2, 3 and 4 were to be taken into consideration by the Benders 

Decomposition:  



 

 

 
 

6.6.3.1 Pattern A: (y₂, y₃) = (0,0) 

No blocks accepted. 

• Same as iteration 1:  

o t=1: MP1 10 MW @20 → 200. 

o t=2: MP1 10 MW @20 → 200. 

o t=3,4: 0. 

• Total welfare: W_{blocks}(0,0) + V0,0) = 0 + 400 = 400 

6.6.3.2 Pattern B: (y₂, y₃) = (1,0) or (0,1) — exactly one block accepted 

 

Remaining ATC per MTU = 15 MW 

Subproblem, enforcing business rules: 

• t=1,2: 

o Remaining ATC = 15. 

o MP1 wants 10 MW @20. 

o Capacity ≥ 10, so MP1 must be fully accepted at 10 MW. 

o No other regular bids, so:  

▪ MP1 =10 MW, block MP2=10 MW (fixed), total 20 ≤25. 

o Welfare t=1 and t=2:  

▪ MP1: 10×20 = 200 each. 

▪ Block: 10×10 = 100 each. 

▪ Total per MTU = 300. 

• t=3,4: 

o No regular bids, but block uses 10 MW. 

o Welfare per MTU = block 10×10 = 100. 

Total welfare = 800. 

Pattern (0,1) gives the same total welfare by symmetry. 

6.6.3.3 Pattern C: (y₂, y₃) = (1,1) — both blocks accepted 

Now each block uses 10 MW per MTU, so total block usage per MTU = 20 MW. 



 

 

 
 

Remaining ATC per MTU = 5 MW 

Subproblem: 

• t=1,2: 

o Remaining ATC = 5. 

o MP1 bid is 10 MW @20. 

o Business rule: MP1 must be fully accepted because its bid price is higher than 

the auction Price (AP = 10). 

o But here capacity for the regular bid is only 5 MW, not enough to accept 10 MW. 

o That means we must accept MP1 and reject one of the block bids. 

• t=3,4: 

o Still 5 MW residual ATC, but no regular bids. 

This block-acceptance pattern violates Business Rule 1, which requires that all single-hour 

bids priced above AP be fully accepted. Therefore, the configuration (1,1) is infeasible and 

must be excluded from the solution space. 

Total welfare: 

• MP2: 10×10×4 = 400. 

• MP3: 10×10×4 = 400. 

• MP1: 0. 

Total = 800. 

So both patterns (1,0)/(0,1) and (1,1) produce 800 total welfare. But: 

• The pure welfare-maximization problem admits multiple solutions with welfare equal to 

800.  

• (1,0) and (0,1) keep MP1 fully accepted in MTUs 1–2. 

• After enforcing Business Rule 1, the admissible solutions are restricted to: (1,0) and 

(0,1) 

• The configuration (1,1) is excluded because it would prevent the full acceptance of a 

higher-priced single-hour bid. 

Therefore, (y₂, y₃) = (1,0) or (0,1) and (0,0) is dominated. 



 

 

 
 

The tie-breaking algorithm is applied since 2 solutions give the same total welfare. However, 

since both solutions have the exact same number of accepted block bids, the system will opt for 

the solution that has a lower ID number (let’s assume it the Block Bid of MP2). 

6.6.4 Auction price computation 

MTU Total demand (MW) ATC (MW) 
Shadow price 

(€/MWh) 

AP (€/MWh) 

10:00–

10:15 
30 25 0 

10 

10:15–

10:30 
30 25 0 

10 

10:30–

10:45 
20 25 0 

0 

10:45–

11:00 
20 25 0 

0 

 

Therefore, the auction price for each MTU is equal to 0. 

6.6.5 Final auction results 

 

Time period 
ATC 

(MW) 

MP1 

(single-hour 

bid) selected 

quantity (MW) 

MP2 (block 

bid) selected 

quantity (MW) 

MP3 (block 

bid) selected 

quantity (MW) 

Auction 

Price 

(€/MWh) 

10:00–10:15 25 10 10 0 10 

10:15–10:30 25 10 10 0 10 

10:30–10:45 25 - 10 0 0 

10:45–11:00 25 - 10 0 0 



 

 

 
 

6.7 Example 6 bis 

Time ATC MP1 MP2 MP3 MP4 

10:00–

10:15 
30 

10 MW @ 20 

€/MWh 

Block 10 MW @ 

10 €/MWh 

Block 10 MW @ 

10 €/MWh 

10 MW @ 5 

€/MWh  

10:15–

10:30 
30 

10 MW @ 20 

€/MWh 
  

10 MW @ 5 

€/MWh 

10:30–

10:45 
30 —   

— 

10:45–

11:00 
30 —   

— 

 

6.7.1 Iteration 1: baseline scenario 

The block bids are initially rejected. The ATC is fully available in each MTU for single-hour bids. 

Subproblem with y_2=y_3=0: 

• t=1: accept 10 @20 and 10 @5 → welfare 250, ATC not fully used (capacity slack), λ₁ = 

0. 

• t=2: accept 10 @20 and 10 @5 → welfare 250, ATC not fully used (capacity slack), λ₂ = 

0. 

• t=3: → λ₃ = 0. 

• t=4: → λ₄ = 0. 

So: 

• V(0) = 500. 

• λ = (0, 0, 0, 0). 

Optimality cut from iteration 1: 

𝜃 ≤  500 

The first cut is simply: θ ≤ 500 (no dependence on y₂ and y₃). 

Master moves to iteration 2. 



 

 

 
 

6.7.2 Iteration 2: blocks accepted (1, 1) 

The master problem becomes bounded by the optimality cut and the feasibility cut: 

𝑀𝑎𝑠𝑡𝑒𝑟 = max(400 ⋅ 𝑦2 + 400 ⋅ 𝑦3 + 𝜃) 

Constraints: 

4. 0 ≤ 𝜃 ≤  500 

5. 10𝑦2 + 10𝑦3 ≤  25 

6. 𝑦 ∈ {0; 1} 

To maximize, master sets θ=500 and y₂=y₃=1, because there’s no penalty yet. Objective: 

400·1 + 400·1 + 500 = 1,300. 

Therefore, the master proposes (1,1). 

Subproblem with y₂=y₃=1 and rem. ATC=10: 

• t=1: accept 10 @20 → welfare 200, ATC used, λ₁ = 20. 

• t=2: accept 10 @20 → welfare 200, ATC used, λ₂ = 20. 

• t=3: → λ₃ = 0. 

• t=4: → λ₄ = 0. 

So: 

• V(1,1) = 400. 

• λ = (20, 20, 0, 0). 

 

Optimality cut from iteration 2: 

𝜃 ≤  400 − 400(𝑦2 − 1) − 400(𝑦3 − 1) 

𝜃 ≤  1200 −  400(𝑦2 +  𝑦3)  

𝜃 ≤ 500 (𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦 𝑐𝑢𝑡 𝑓𝑟𝑜𝑚 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 1) 

Now the master is constrained by: 

• θ ≤ 500. 

• θ ≤ 1200 − 400(y₂ + y₃). 

(0,0): 



 

 

 
 

o θ ≤500 and θ ≤1200−0=1200 → θ≤500 

o Obj = 0 + θ ≤ 500 ⇒ best=500. 

(1,0) or (0,1): say (1,0): 

o θ ≤500 and θ ≤800 ⇒ θ≤500 

o Obj=400·1 +400·0 + θ ≤400 +500 =900 ⇒ best=900. 

(1,1): 

o θ ≤500 and θ ≤400 ⇒ θ≤400 

o Obj=400·1+400·1+θ ≤800+400=1200. 

Master still prefers (1,1) with θ=400 ⇒ objective 1,200 

Benders selects y*=(1,1) (blocks accepted), θ*=400, total welfare=400 + 400 + 400 = 1200 

6.7.3 Applying business rules 

If business rules 1, 2, 3 and 4 were to be taken into consideration by the Benders 

Decomposition:  

6.7.3.1 Pattern A: (y₂, y₃) = (0,0) 

No blocks accepted. 

• Same as iteration 1:  

o t=1: MP1 10 MW @20 and MP4 10 MW @5 → 250  

o t=2: MP1 10 MW @20 and MP4 10 MW @5 → 250 

o t=3,4: 0. 

• Total welfare: W_{blocks}(0,0) + V0,0) = 0 + 500 = 500 

6.7.3.2 Pattern B: (y₂, y₃) = (1,0) or (0,1) — exactly one block accepted 

 

Remaining ATC per MTU = 20 MW 

Subproblem, enforcing business rules: 

• t=1,2: 

o Remaining ATC = 20. 

o MP1 wants 10 MW @20. 

o MP4 wants 10 MW @5. 



 

 

 
 

o Welfare t=1 and t=2:  

▪ MP1 & MP4: 10×20+10×5 = 250 each. 

▪ Block: 10×10 = 100 each. 

▪ Total per MTU = 350. 

• t=3,4: 

o No regular bids, but block uses 10 MW. 

o Welfare per MTU = block 10×10 = 100. 

Total welfare = 900. 

Pattern (0,1) gives the same total welfare by symmetry. 

6.7.3.3 Pattern C: (y₂, y₃) = (1,1) — both blocks accepted 

Now each block uses 10 MW per MTU, so total block usage per MTU = 20 MW. 

Remaining ATC per MTU = 10 MW 

Subproblem: 

• t=1,2: 

o Remaining ATC = 10. 

o MP1 bid is 10 MW @20. 

• t=3,4: 

o Still 10 MW residual ATC, but no regular bids. 

Configuration (1,1) is feasible. 

Total welfare: 

• MP2: 10×10×4 = 400. 

• MP3: 10×10×4 = 400. 

• MP1: 10×10×2=400. 

Total = 1200. 

Therefore, (y₂, y₃) = (1,1). 



 

 

 
 

6.7.4 Auction price computation 

MTU ATC usage (MW) 
Shadow price 

(€/MWh) 

AP (€/MWh) 

10:00–10:15 30 20 10 

10:15–10:30 30 20 10 

10:30–10:45 20 / 30 0 0 

10:45–11:00 20 / 30 0 0 

 

6.7.5 Final auction results 

 

Time 

period 

ATC 

(MW) 

MP1 

(single-hour 

bid) 

selected 

quantity 

(MW) 

MP2 (block 

bid) selected 

quantity 

(MW) 

MP3 (block 

bid) 

selected 

quantity 

(MW) 

MP4 

(single-hour 

bid) 

selected 

quantity 

(MW) 

Auction 

Price 

(€/MWh) 

10:00–

10:15 
30 10 10 

10 0 10 

10:15–

10:30 
30 10 10 

10 0 10 

10:30–

10:45 
30 - 10 

10 - 0 

10:45–

11:00 
30 - 10 

10 - 0 

 


